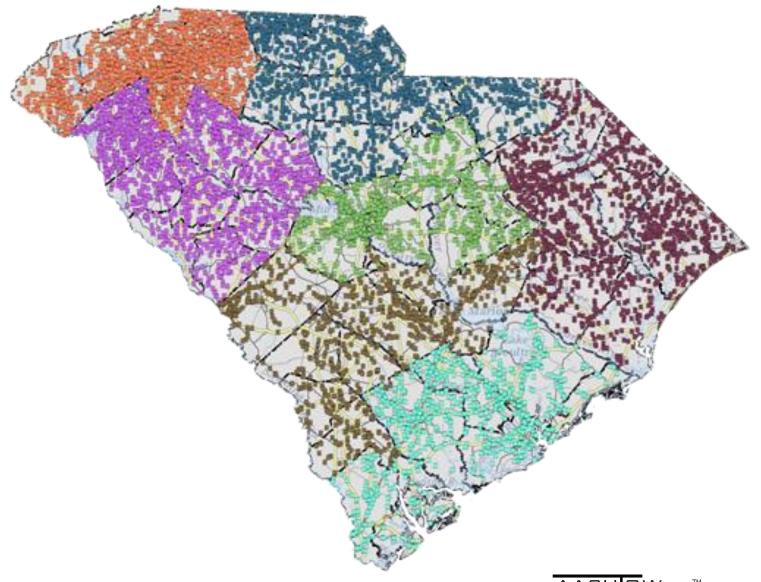


Accelerating Bridge Modeling with BrDR API: Case Studies from SC, IA, and OH

2025 Rating and Design User Group Meeting Boise, ID | August 12-13, 2025

Agenda

- Overview
- SCDOT Load Rating Project
- Iowa DOT Load Rating Project
- Ohio DOT Load Rating Project
- Conclusion



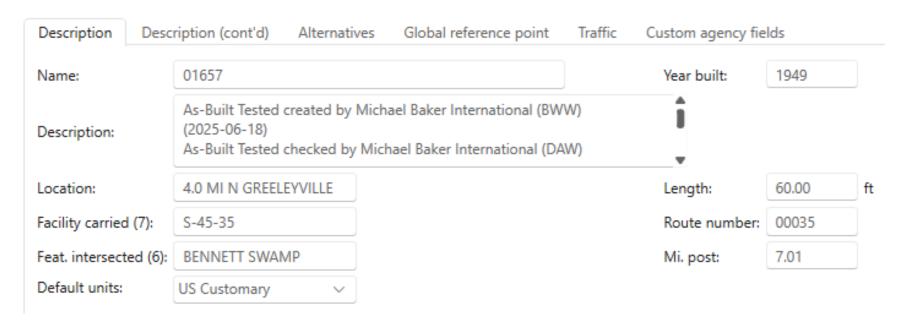
SCDOT Load Rating Project

SCDOT Implementation of Testing Results for Precast Slab Bridges

Background

- Around 25% of SCDOT Bridge inventory consists of precast panel slabs.
- Following initial load rating in BrR, a majority required posting.
 - Designed for older, lighter vehicles (H10 or H15 Truck)
- Ratings were not consistent with the condition and performance in the field.
- Field and Lab testing was completed to determine if capacity could be increased.
- Results confirmed theory that the capacity was higher than the results in BrR were showing.
- How to update so many models efficiently?

Scaling BrR Modeling for 1250 Bridges in South Carolina

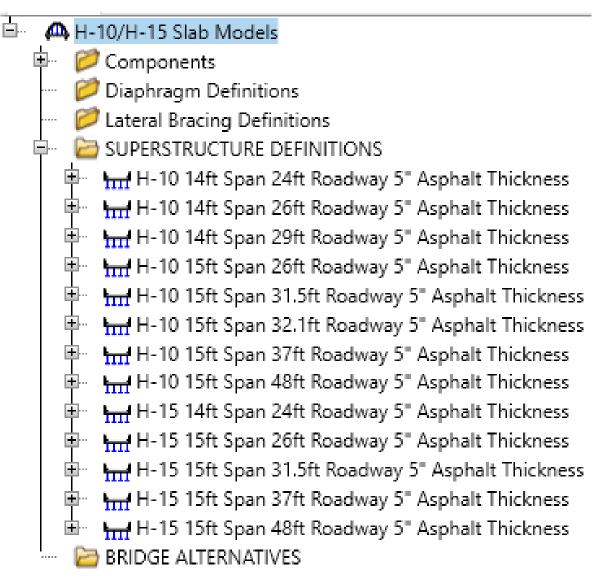

• The Challenges:

- SCDOT needed to update about 1250 bridge models in BrR.
- Each bridge had unique metadata (location, length, route number, etc.)
- Manual entry would be time-intensive and errorprone.
- Each bridge had an existing BrR model that the updates would need to be added to.

Why Automation Was Essential:

- Volume and complexity made manual modeling impractical.
- Consistency and accuracy were critical across all bridge files.

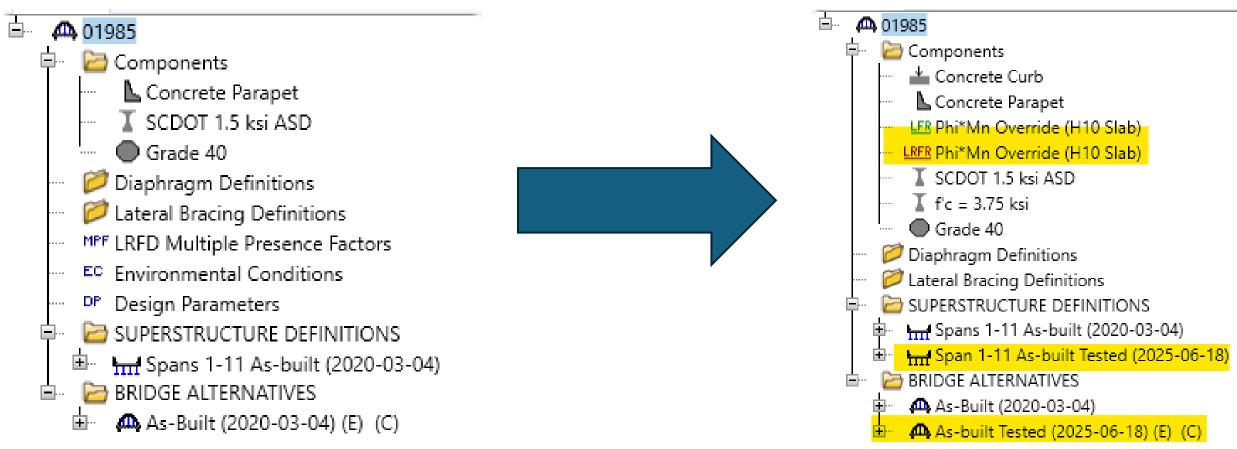
Facility Carried	Feature Intersected	Year Built	Total Length (Length)	Route Number	Mile Post
S-45-35	BENNETT SWAMP	1949	60	35	7.015
S-28-148	CAMP CREEK	1950	30	148	0.429
S-42-474	CANE CREEK	1950	90	474	1.300
S-15-33	INDIAN CREEK	1951	42	33	3.133
S-17-33	BUCK SWAMP	1951	120	33	2.873
S-18-86/MT ZION RD	TRIB INDIAN FIELD SWP	1951	28	86	3.418
S-25-20	MILL BAY CREEK	1951	70	20	5.654
S-43-41	BLUFF SWAMP NO 4	1951	70	41	4.407
S-18-16	POLK SWAMP	1952	42	16	5.559



Scaling BrR Modeling for 1250 Bridges in South Carolina

Simplifying the Process

- Bridge data could be pulled from BrM Database into Excel.
 - Each bridge was categorized by span length and width to match standard drawings.
 - Allowed us to filter out bridges that did not meet the criteria for automated updates.
 - Certain criteria needed to be met for K-factor updates.
- Created BrR models for all standard bridge plans in one .xml file.
 - Included K-factor update from testing. Assumed 5" wearing surface, Fair condition factor, and ADT <5000.
 - Any bridges with wearing surface >5" or ADT >5000 would need manual update.
 - Initial discussion on having models in 1" increments but was determined to be unnecessary.
- This allowed for the fewest models encompassing a majority of the bridges that needed updates.



Scaling BrR Modeling for 1250 Bridges in South Carolina

- Automation allowed for minimal BrR entry.
 - Limited checking and QC time
- Updated all metadata, added in superstructure template, and updated bridge alternatives.
- BrR model was fully complete and ready to be uploaded to server.

2025 Rating and Design User Group Meeting

Scaling BrR Modeling for 1250 Bridges in South Carolina

- Creating Load Rating Summary Form (LRSF)
 - Along with a BrR model, each bridge would need an LRSF with bridge metadata and rating results that is signed and sealed electronically.
 - This is needed in Excel and PDF form.
 - Excel LRSF was created for each BrR superstructure model and blank metadata.
 - Macro was developed to populate correct LRSF template with bridge data and along with the addition of PE stamp and data.
 - These were then converted into PDF format as needed.

SCL	ST	LRFR BRIDGE LOAD RATING SUMMARY						Version	
									Page 1 of
				SECTION 1 -	GENERAL BR	IDGE DATA	'		
(8) Asset ID		Route Type		(27) Year Buil	t	(90) Date of Inspection (41			(411) Date Rated
00000		0		0					
(9) Bridge Loca	tion		(7) Facility Carri	ed		(6) Feature Intersected/Route Crossing			•
· · ·			0			0			
(49) Length	(11) Milepost	(2) District	(3) County		(22) Owner	(418) Conditions During Rating (NBI Item 58, NBI Item 59, NBI Item 60)			NBI Item 60)
ft.	0.000	0	0		0				
(43, 44, 45, & 46) Bridge Description			(31) Design Lo	oad	(108) Existing W	/earing Surface Type	(891) LR Wearing Su	ırface Depth (in)	
Span RCS Bridge				0	0				
Rating Program & Version Rating Program			& Version		Rating Method AASHTO Reference				
BrR 7.5 - AAS	HTO Engine		N/A			LRFR MBE 3rd Edit		MBE 3rd Edition,	w/ 2023 Interim
(58) Deck (59) Superstructure		ructure	(60) Substruc	ture	(62) Culvert		(113) Scour Critical		
			SECTION 2	- INVENTOR	Y AND OPER	ATING LOAD F	RATINGS		
				Controlling	Controlling				
Rating Vehicle Rating Lev		ng Level	Member	Location	Controlling Limit State Rating Factor		g Factor		
		rentory	\$2-\$5	1.5	STRENGTH-I Concrete Flexure 0.857		857		
HL-93 Truck Train + Lane (90%) Invento		ventory	-	-		-		-	
HL-93 Tandem	+Lane	Inv	rentory	\$2-\$5	1.6	STRENGTH-I Concrete Flexure 0.779		779	
HL-93 Truck + L	300	00	erating	S2-S5	1.5	STRENGTHAL	Concrete Flexure	1	111

Creating LRSF for 1250 Bridges in South Carolina

LRSF Creation

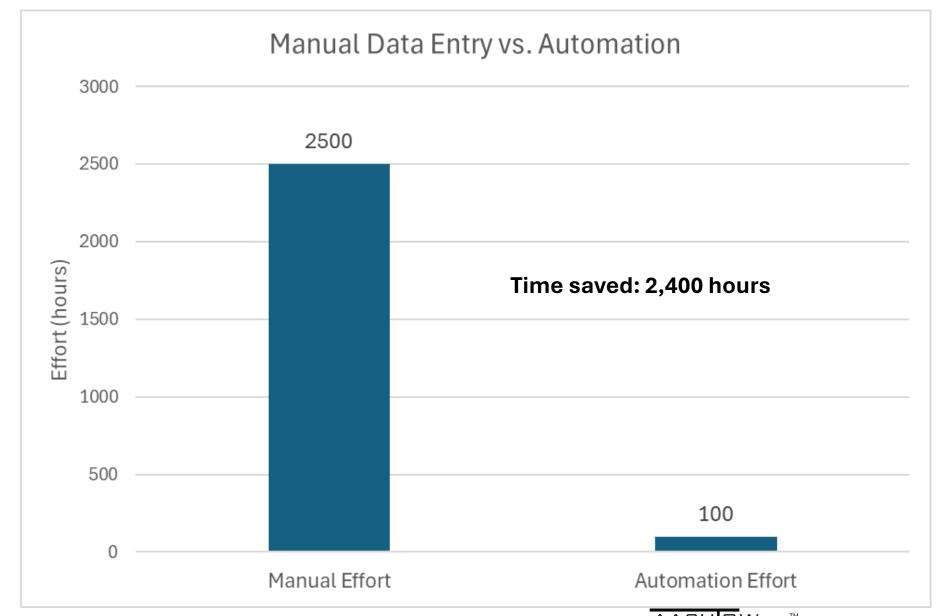
Instructio	ons			Inputs
0. Make sure the tab, "H10-H15" is up to date.		Last updated: 6/18/25		•
1. Enter the	e following information:			
	Date of signing		Signing Date:	6/24/2025
	Path of the folder where LRSF template Excel sheet ar	e located	Template Folder:	C:\Temp\SCDOT\LRSF\Template
	Path of the folder where the templates are copied to		Destination Folder:	C:\Temp\SCDOT\LRSF\Output
	Path of the PE stamp image		Stamp Image file:	C:\Temp\SCDOT\LRSF\PeStamp.jpg
2. Click on	"Copy Bridge" to copy the templates for each bridge.			
3. Click on	"Add Date and Stamp" to add the signing date and PE sta	amp.		
Alternative	ely, you can click on "Add Date" or "Add Stamp" separate	ly.	Co	opy Bridge
			Update LRSF	
Asset ID	Template File Name	Final File Name		

SCI	ST	LR	FR BRID	GE LOA	D RAT	ING SUI	MMARY		Version :
									Page 1 of
				SECTION 1 -	GENERAL BR	RIDGE DATA			
(8) Asset ID Route Type		(27) Year Built		(90) Date of Inspection			(411) Date Rated		
01985		Secondary	Road	1954		9/7/2023			6/24/2025
(9) Bridge Location (7) Facility Carri 8.5MI SW ABBEVILLE S-1-40			ied		(6) Feature Intersected/Route Crossing CALHOUN CREEK				
(49) Length	(11) Milepost	(2) District	(3) County		(22) Owner	(418) Conditions During Rating (NBI Item 58, NBI Item 59, NBI Item 60)			NBI Item 60)
154 ft. 3.403 2 ABBEVILLE (43, 44, 45, & 46) Bridge Description 11 Span RCS Bridge			(31) Design L	SCDOT	5,5,5 (108) Existing Wearing Surface Type Bituminous		(891) LR Wearing Surface Depth (in)		
Rating Program & Version Rating Program			& Version		Rating Method		AASHTO Reference		
BrR 7.5 - AASHTO Engine N/A			N/A			LRFR MBE 3rd Edition, w/ 2		w/ 2023 Interim	
(58) Deck 5 Fair		(59) Superst	ructure	(60) Substruc 5 Fair	ture	(62) Culvert N N/A (NBI)		(113) Scour Critical 3 - Scour Critical	
	'		SECTION 2	- INVENTOR	Y AND OPER	ATING LOAD I	RATINGS		'
				Controlling	Controlling				
Rating Vehicle Rating Lo		ing Level	Member	Location	Controlling Limit State Ratin		Factor		
HL-93 Truck + Lane Inventory		entory	\$2-\$5	1.5	STRENGTH-I	TRENGTH-I Concrete Flexure 0.857		857	
HL-93 Truck Train + Lane (90%) Inventory		entory	-	-	-		-		
HL-93 Tandem + Lane Inventory		ventory	\$2-\$5	1.6	STRENGTH-I Concrete Flexure 0.779		779		
HL-93 Truck+I	Lane	Ор	erating	S2-S5	1.5	STRENGTH-I	Concrete Flexure	1.3	111

The Automation Solution for SCDOT's Load Rating Project

Automating Metadata and Superstructure Modeling in BrR

What the automation does:


- Reads metadata from Excel and populates it into BrR via API.
- Copies superstructure definitions from a template BrR file based on bridge configuration.
- Create corresponding structure alternatives.

Key Benefits:

- Enables rapid population of hundreds of BrR models.
- Ensures consistency in structure definitions.
- Reduces manual workload and potential for input errors.

• ROI:

- Manual data entry: 2,500 hours
- Automated entry: around 100 hours
- Time saved: 2,400 hours (96% time saving)

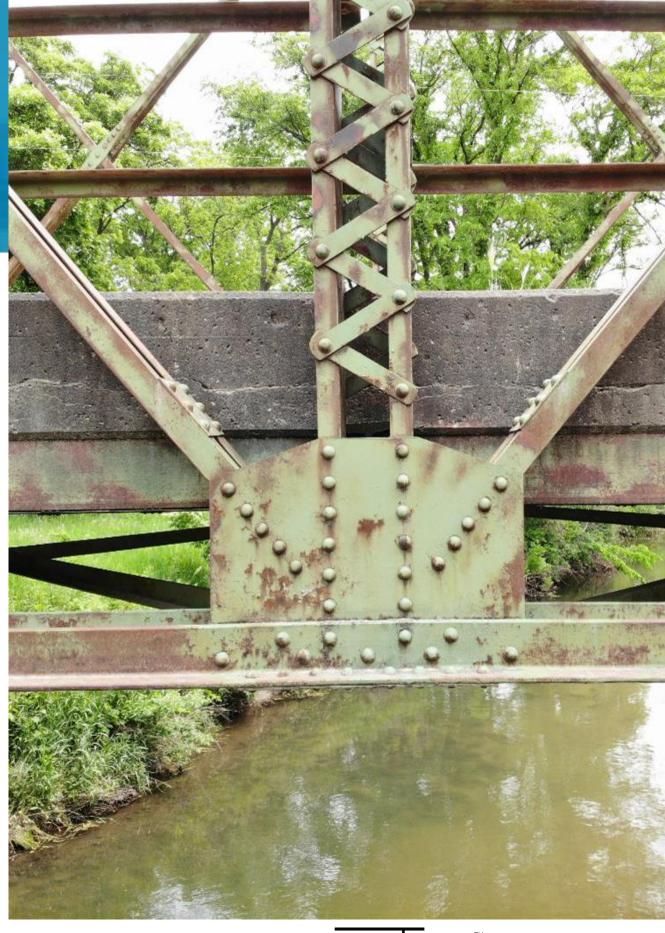
API Tool For Modeling Iowa Trusses in BrR

Background

- Iowa is setting up BrR for locals.
- To help, three consultants were hired to create templates for lowa's standard bridges.
- Michael Baker Is modeling the standard trusses including gusset plates.

Iowa Truss Standards

- About 100 from 1914-1945
- Modeling ~70 in BrR
- Templates will be baseline for users


API Tool For Modeling Iowa Trusses in BrR

Gusset Plate Problem

- Rating gusset plates is complex.
- Users are new to BrR.
- Even within standard trusses, gusset plates are not consistent (Plans say "See Shop Drawings").

Solution

- Develop an API tool to assist load raters in modeling the gusset plates.
- Make it easier for new users.
- Create uniformity amongst the different lowa agencies.

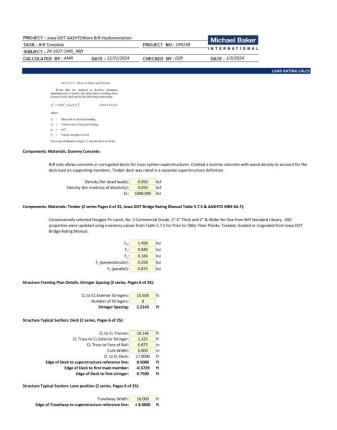
- Create Iowa DOT Standard BrR Library and System Files
- Create Iowa DOT Br Standard Analysis Setting
- Create Iowa DOT Standard BrR Preferences, Including Control Options
- Create BrR Models for Standards and Generate Baseline Load Ratings

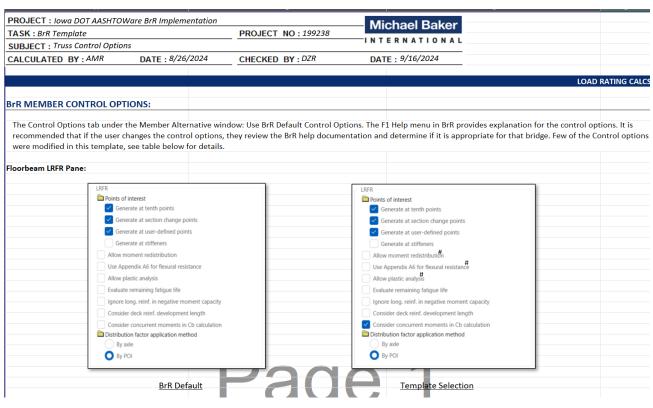
- Create BrR Models for Trusses including Gusset Plates and Generate Baseline Load Ratings
 - Seven series, oldest 1914 and newest 1945
 - Three types of trusses

Pony Truss

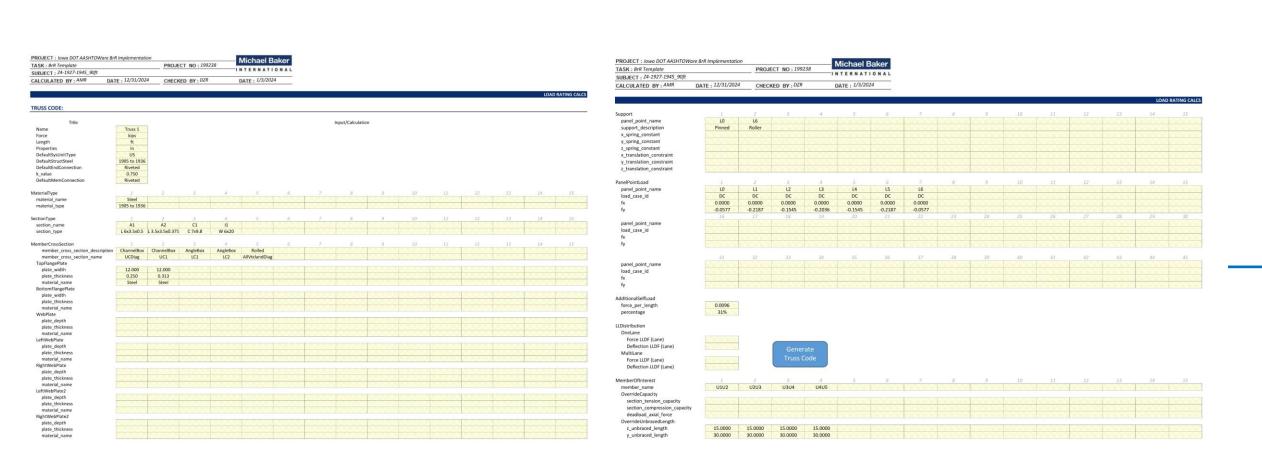
Straight High Truss

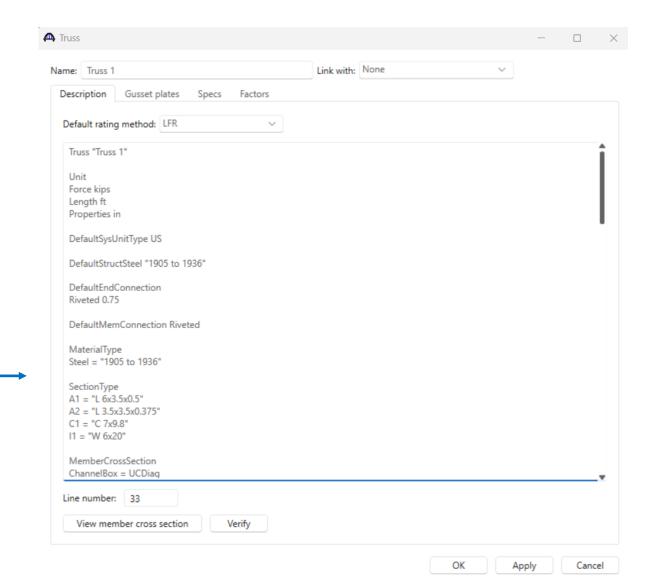
Arched High Truss


- Develop BrR Models for Trusses including Gusset Plates
 - Leverage similarities in truss standards to streamline modeling and analysis
 - Create templates for efficiency and consistency
 - Reduce errors and enhance quality

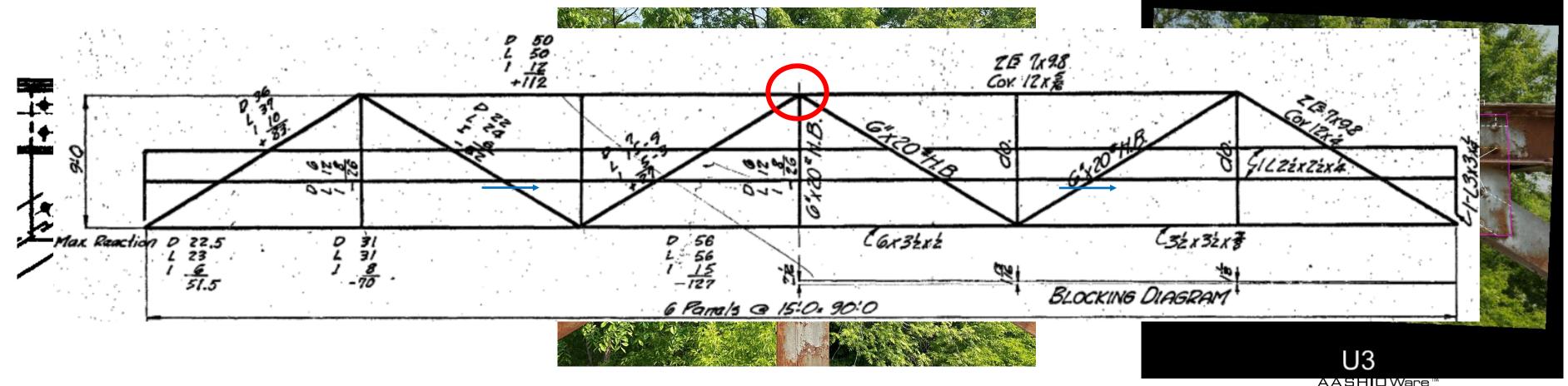


- Create BrR Models for Trusses including Gusset Plates
 - Create one pony and one high truss load rating
 - Submit for Iowa DOT review
 - Address DOT comments
 - Obtain final approval from Iowa DOT

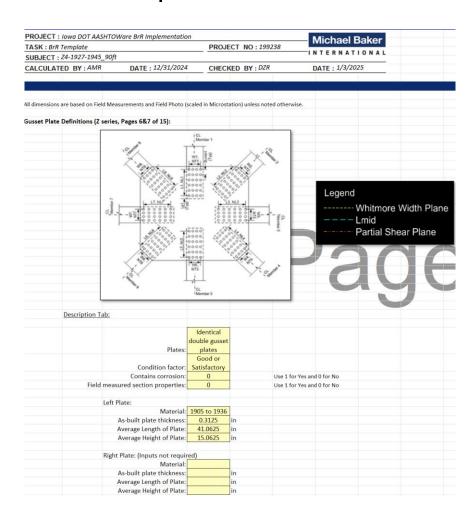


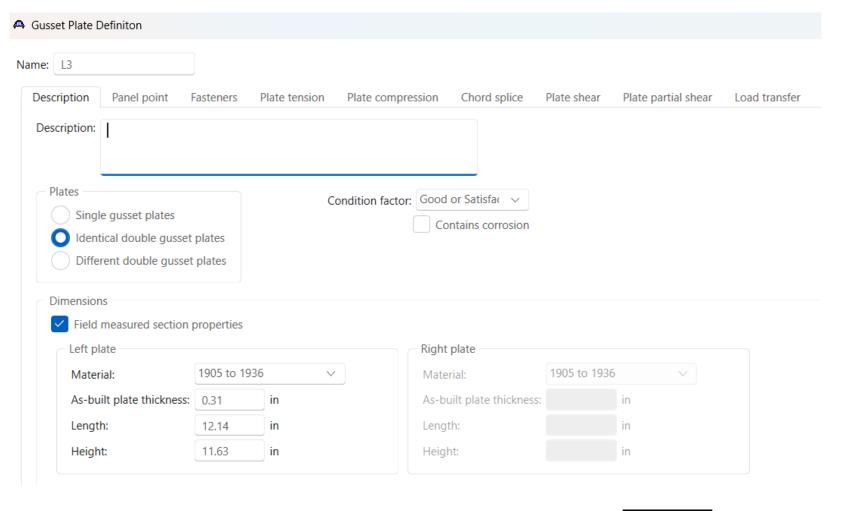


- Create BrR Models for Trusses including Gusset Plates
 - Use Excel Macro to create BrR truss code.



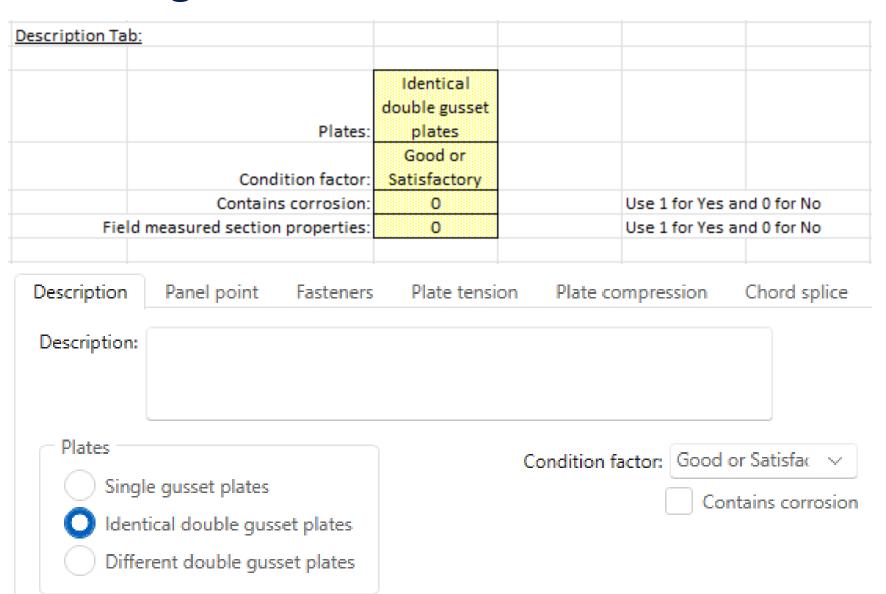
- Create BrR Models for Trusses including Gusset Plates
 - Use iPad/GoPro/Drone to obtain gusset plate information in the field.
 - Use field photos, field measurements, and MicroStation to generate gusset Inputs.





- Create BrR Models for Trusses including Gusset Plates
 - Use BrR Open API tool "BAMS" to auto transfer gusset plate inputs into BrR gusset plate windows.

Automating Gusset Plate Data Entry – Iowa DOT Use Case


Why we need to automate gusset plate modeling in BrDR?

Manual Process Overview

- Engineers manually enter gusset plate data into BrDR.
- Up to about 650 data entries per gusset plate
- Data is typically sourced from Excel spreadsheets.

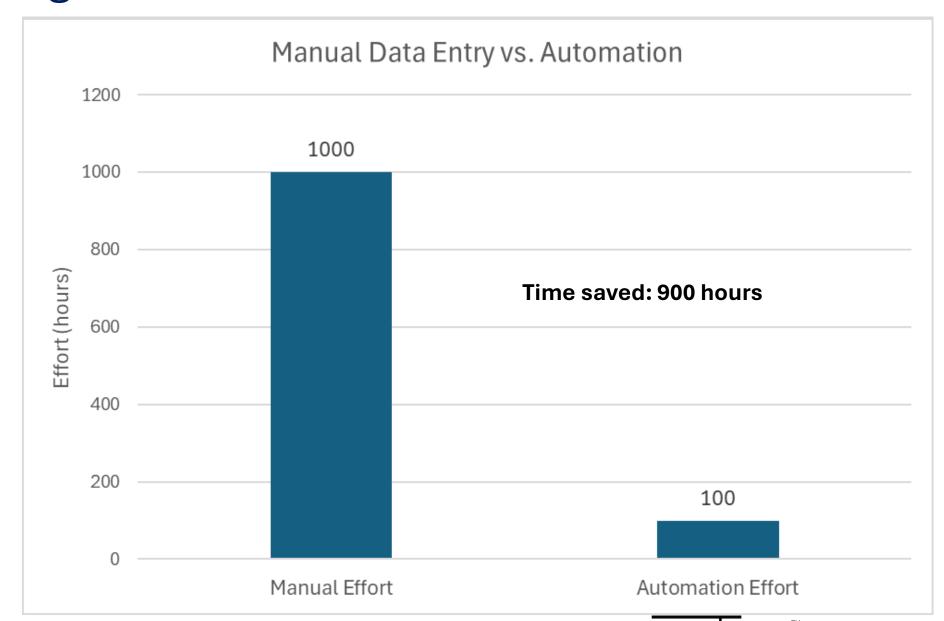
Challenges with Manual Entry

- Time-consuming and repetitive for each gusset plate
- High risk of human error (e.g., typos, misalignment of data)
- Inefficient for large or complex truss structures
- Difficult to scale or standardize across projects

The Automation Solution for Iowa DOT's Load Rating Project

How we automated gusset plate modeling

What the automation does:

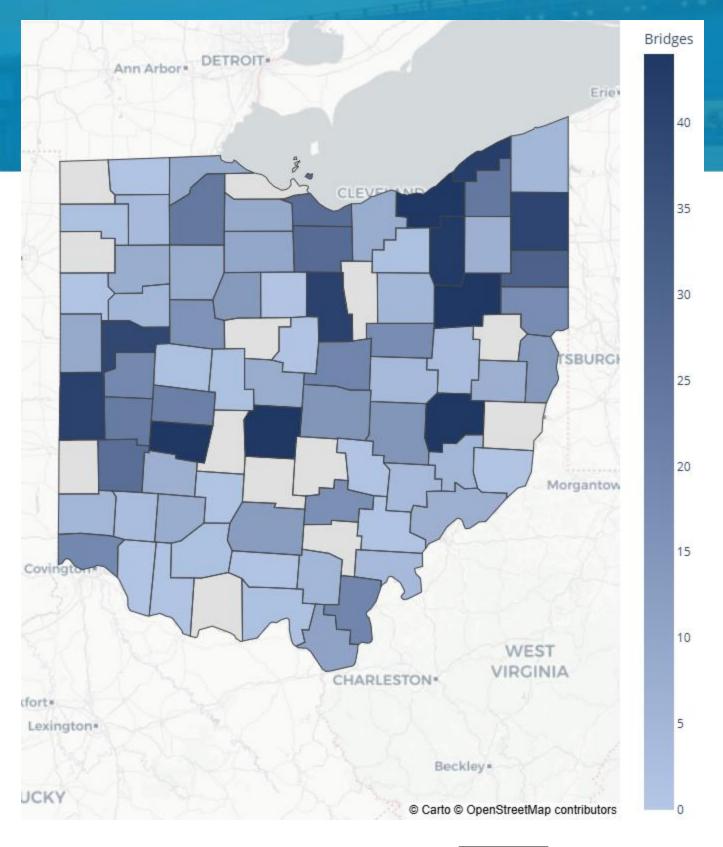

- A custom-built tool developed for gusset plate definition
- Includes a UI for selecting Excel files and displaying warnings or errors
- Automates the transfer of gusset plate data from Excel into BrDR

How It Works:

- Reads gusset plate data from Excel
- Uses BrDR's API to populate the gusset plate automatically

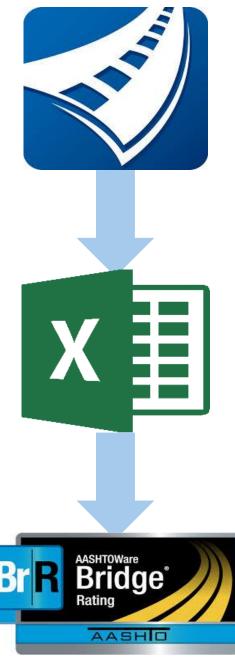
• ROI:

- Manual data entry: 1,000 hours
- Automated entry: around 100 hours
- Time saved: 900 hours

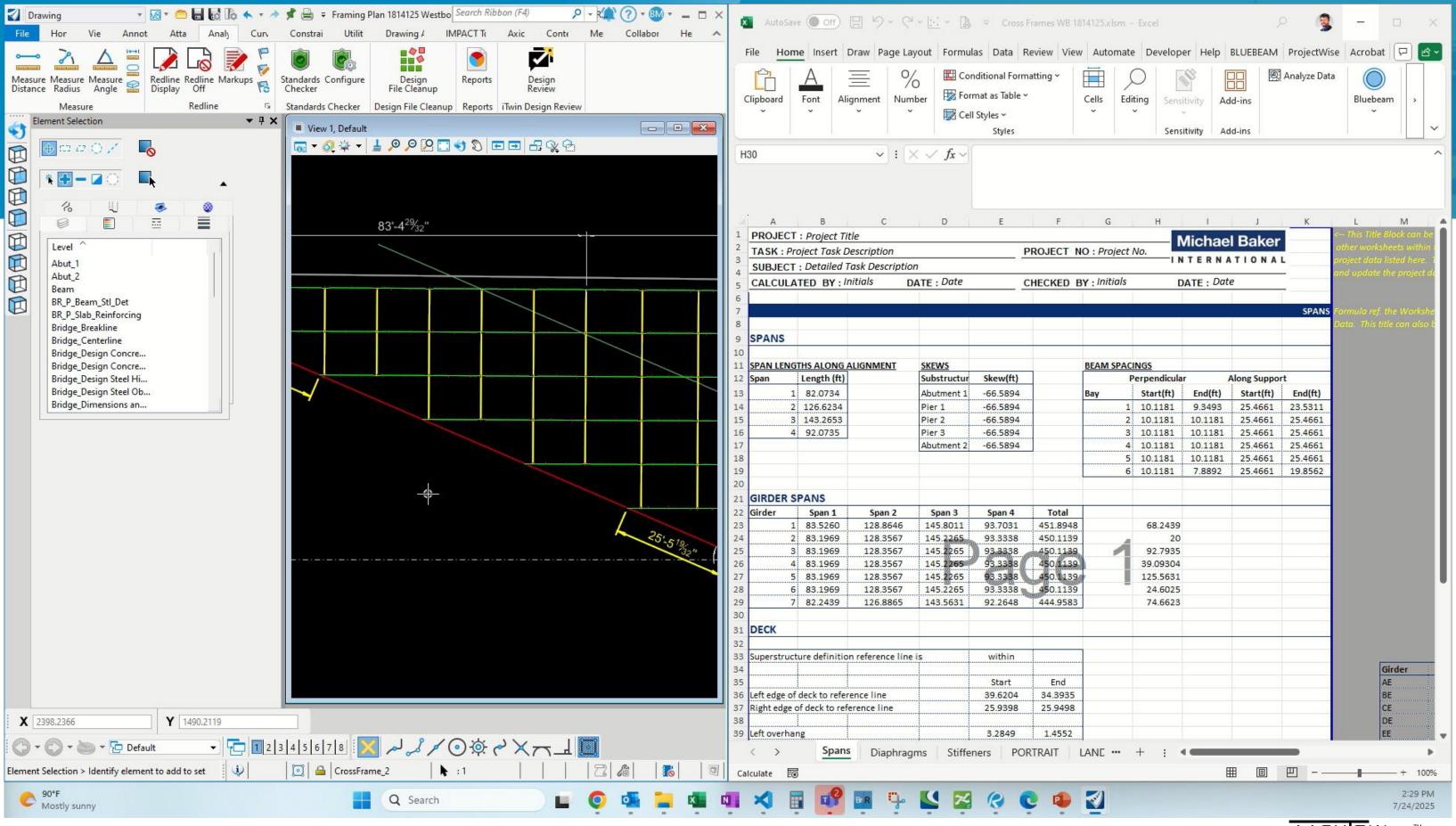


ODOT Load Rating Project

- Working with Cindy Wang and Amjad Waheed
- Statewide Load Rating Includes all ODOT Owned Bridges
- Michael Baker has Rated > 1200 over 2 contracts
- Complex Steel Bridges Include
 - Curved
 - Flared
 - Kinked/Chorded/Dog-legged



ODOT Steel Bridge Automation


- Without Automation
 - Use BrR Wizards & table inputs
 - Might use Excel to speed up
- With Automation
 - Uses VBA within Microstation
 - Engineer draws framing plan forcing complete geometry definition
 - Tool provides de-bugging feedback
 - Tool exports to Excel in BrR friendly table

ODOT Steel Bridge Automation

• Gains:

- 2,000 man hours expected savings
- Allow junior staff to input rate more complex bridges
- Improved quality

Bridge Type	Labor (Hours)	Labor (% Reduction)	Inputting Staff	Quality
Flared Steel	20 → 10	50%	PE only -> EITs	Improved Xframe & Stiffener Inputs
Curved Steel	32 → 12	63%	PE only -> EITs	Improved Geometry Input
Irregular Stiffeners/ Crossframes	20 → 12	40%		Improved Xframe & Stiffener Inputs

Acknowledgement

- SCDOT Load Rating Project
- Iowa DOT Load Rating Project
- Ohio DOT Load Rating Project

Contact Us

Hanjin Hu, Ph.D., P.E., Technical Manager hanjin.hu@mbakerintl.com
Brett C Mattas, PE, SE, Bridge Technical Manager brett.mattas@mbakerintl.com
Jenny Raines, PE, Bridge Senior Project Manager jenny.raines@mbakerintl.com
Ashutosh Ranade, PE, sUAS, Bridge Civil Engineer ashutosh.ranade@mbakerintl.com
Ben Walter, EIT, Bridge Civil Associate II benjamin.walter@mbakerintl.com

