

Use of Bridge Rating Data in the New York State DOT Load Rating Bridge Safety Assurance Programs

> Ratan Huda, MS, PE (NYSDOT) Ekin Senturk, AVP, PhD, PE (HNTB)

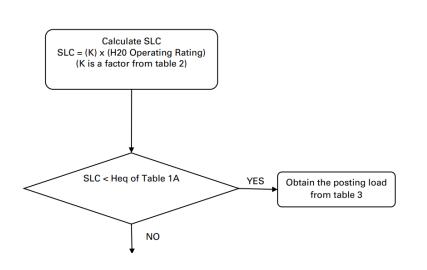
RADBUG 2024 | August 6-7 | Buffalo, NY

Agenda:

- Overview of AASHTOWare BrR Use in Bridge Safety Assurance Program
 - Load Rating and Posting of Bridges
 - Permitting Overweight Vehicles on State Bridges
- Corroded Beam End Shear Rating with BrR
- Gusset Plate Load Rating in BrR
- Questions and Answers

Agenda:

- Overview of AASHTOWare BrR Use in Bridge Safety Assurance Program
 - Load Rating and Posting of Bridges
 - Permitting Overweight Vehicles on State Bridges
- Corroded Beam End Shear Rating with BrR
- Gusset Plate Load Rating in BrR
- Questions and Answers


Load Rating and Posting of Bridges

- Load Rating Levels
 - Level 1: requires detail calculation, documentation, and PE certification
 - Level 2: solely BrR rating; requires update of model after every Inspection
 - Level 3: unratable with BrR
- Total Bridges in NY: 17,800
- Inspection: 10,000/Year (approximate excluding Authority bridges)
- Level 2 with BrR: 8000/Year (approximate)

Load Rating and Posting of Bridges

- Load Posting (El 20-026)
 - Use Level 2 (BrR) if Level 1 Rating is not available or outdated.
 - Safe Load Capacity (SLC) = SLC Factor x H20 Operating
 - Compare SLC against "H" Load Equivalent Force Effects of Legal Loads (Profile)

Table "H"-LOADING TO LEGA	EQUIVALENT	"H"-L
(EXCLUDING S	SU6 & SU7)	(IN
Effective pan Length (ft.)	H Equivalent Legal Load	Effec Ler
Up to 12*	H16	U
13-19	H21	1
20-34	H25	2
35-45	H26	3
46-53	H27	4
54-64	H28	5
65-75	H26	6
76-90	H25	7
91-105	H23	9
106-120	H22	10
121-140	H21	12
Over 140	H20	Ov

"H"-LOADING E	Table 1B "H"-LOADING EQUIVALENT TO LEGAL LOADS									
(INCLUDING	SU6 & SU7)									
Effective Span Length (ft.)	H Equivalent Legal Load									
Up to 12	H16									
13-19	H22									
20-34	H29									
35-45	H31									
46-53	H33									
54-64	H33									
65-75	H32									
76-90	H30									
91-105	H28									
106-120	H26									
121-140	H25									
Over 140	H23									

Agenda:

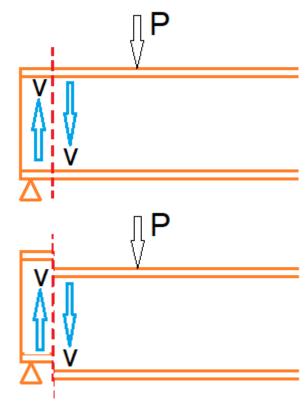
- Overview of AASHTOWare BrR Use in Bridge Safety Assurance Program
 - Load Rating and Posting of Bridges
 - Permitting Overweight Vehicles on State Bridges
- Corroded Beam End Shear Rating with BrR
- Gusset Plate Load Rating in BrR
- Questions and Answers

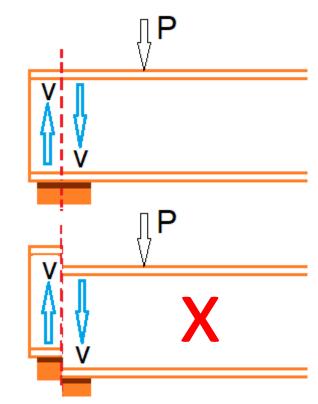
Permitting Overweight Vehicles on State Bridges

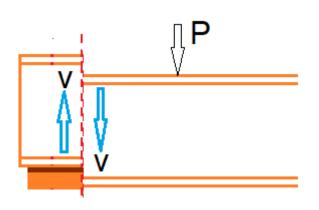
- Use Level 2 (BrR) if Level 1 Rating is not available or outdated.
- Compare HS20 Operating Rating (Tonnage) against Permit Vehicle Load Effect (PVLE in Tonnage).
- PVLE is approximated using BIGTRUK
- When PVLE (w/Scrawl speed) > HS20 OPR, Permit requester has option for refined analysis with BrR.

Permitting Overweight Vehicles on State Bridges

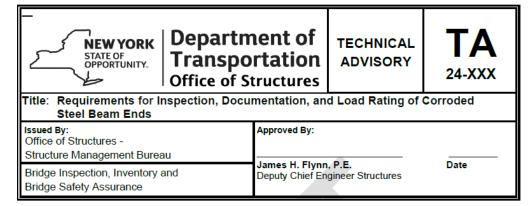
(DVERLOAD EVALUATION CRITERIA EX	AMPLE
Permit Type	Max PVLE w/o Multiple Presence Factor	Review Action
All Permits (except Annual Crane Permits). Trip Permits	Less than or equal to 100 % HS20Greater than 100 % and less than or equal to 150 % HS20	All permits recommended approved for bridges that are not load posted. Trip Permit recommended approved for bridges that are not "R" or load posted.
Trip Permits	Greater than 150 % HS20	Speed Restrictions on individual bridges or routes may be required.

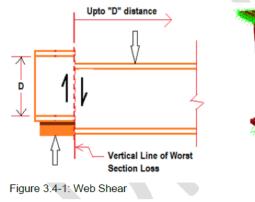


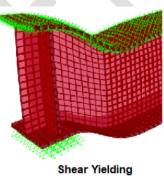

Agenda:


- Overview of AASHTOWare BrR Use in Bridge Safety Assurance Program
 - Load Rating and Posting of Bridges
 - Permitting Overweight Vehicles on State Bridges
- Corroded Beam End Shear Rating with BrR
- Gusset Plate Load Rating in BrR
- Questions and Answers

Corroded Beam End Shear Rating with BrR






Corroded Beam End Shear Rating with BrR

3.4—Web Shear: yielding/buckling may take place along a vertical line of worst section loss beyond the face of the support. Shear failure associated with corrosive section loss is unlikely to take place beyond one web depth distance from the face of the support. However, if section loss is present beyond one web depth distance from the face of the support, it shall be recorded and input in the analysis model of the bridge.

3.4—Web Shear: yielding/buckling may take place along a vertical line of worst section loss beyond the face of the support. Shear failure associated with corrosive section loss is unlikely to take place beyond one web depth distance from the face of the support. However, if section loss is present beyond one web depth distance from the face of the support, it shall be recorded and input in the analysis model of the bridge.

Corroded Beam End Shear Rating with BrR

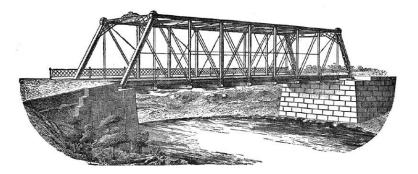
5.3.1—Deterioration Profile for Shear:

LOS in the web shall be from the vertical line of worst section loss at or beyond the face of the bearing. In the case where the bearing length is very small and/or the vertical line of worst section loss is within the bearing length but closer to the face of the bearing, it is practical to assume this LOS is at the face of the bearing.

<u>AASHTOWare BrR</u>: LOS from above the bearing length are suitable to check Web Crippling and Yielding over the length of the bearing. However, BrR does not perform Web Crippling and Yielding checks. LOS inputs from above the bearing length in BrR would result in an ambiguous Shear check at the center line of the support. Shear checks shall start from the face of the bearing. Hence, the starting point for the deterioration profile in BrR shall be at or beyond the face of the bearing. To get the critical shear rating at the beam end, a point of interest (POI) shall be added at the face of the bearing.

Agenda:

- Overview of AASHTOWare BrR Use in Bridge Safety Assurance Program
 - Load Rating and Posting of Bridges
 - Permitting Overweight Vehicles on State Bridges
- Corroded Beam End Shear Rating with BrR
- Gusset Plate Load Rating in BrR
- Questions and Answers



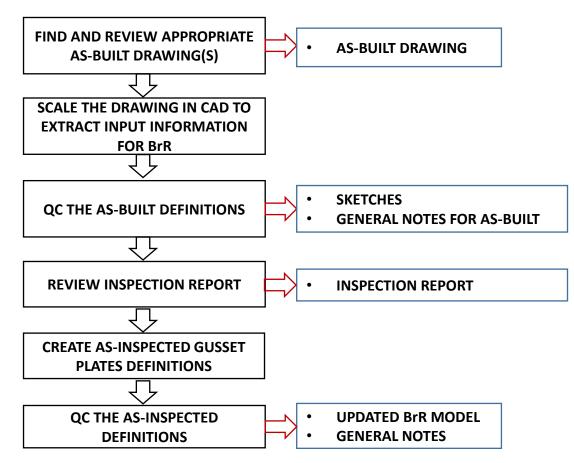
OUTLINE

- PART 1 NYSDOT CONTRACT D037658
- Summary of the work
- Established Workflow
- NYSDOT Gusset Evaluation Tool
- Issues identified in versions earlier than 7.5 involving Interaction Checks

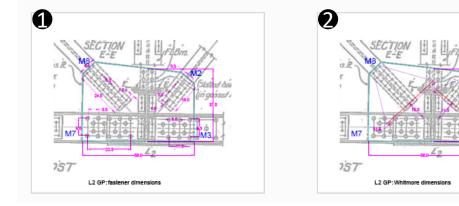
PART 2 – USING NEW FEATURES IN BrR v7.5.1

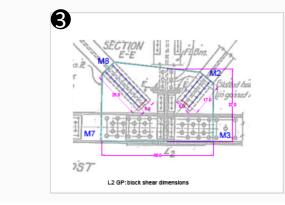
- Gusset Plate Failure Mechanisms
- Single Member Checks
- Interaction Checks
- Global Shear Override Angle
- Partial Shear Override Angle

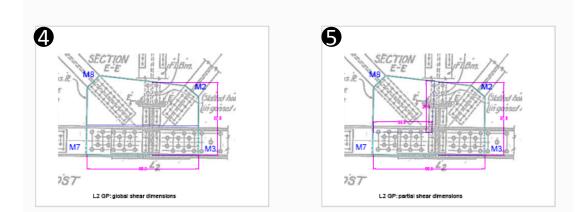
Griggs, Frank. "The Pratt Truss." STRUCTURE Magazine, https://www.structuremag.org/?p=8600.


NYSDOT CONTRACT D037658

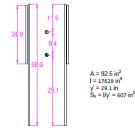

- Truss BrR XML files were updated with gusset plate input for 80 highway bridges.
- A workflow was developed to streamline input extraction from plans.
- Rating results were cross-checked against NYSDOT's LFD & LRFR MathCAD Gusset Plate Analysis tool.
- Issues found were shared with ProMiles Technical Support.


INPUT DATA EXTRACTION WORKFLOW

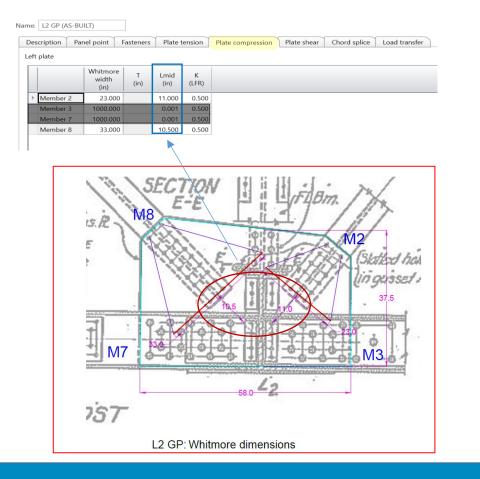


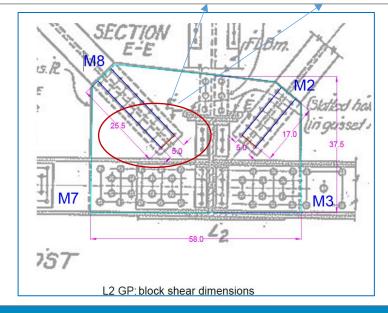


SCALING IN CAD – USE OF LAYERS FOR EACH INPUT GROUP



CHORD SPLICES




U3 GP: chord splice section properties

USE OF SKETCHES FOR INPUT AND QC

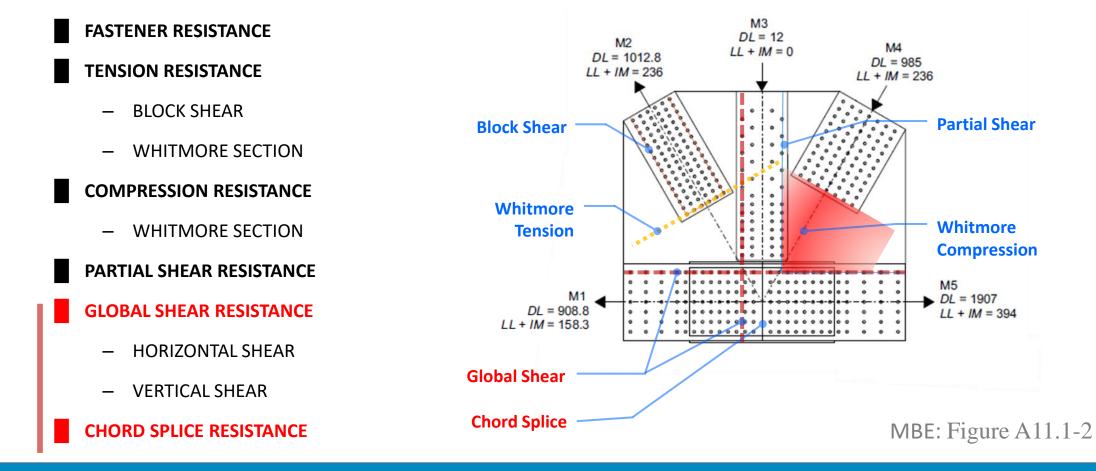
-	scription Pa t plate	nel point F	asteners	Plate tensic	n Plat	e compre	ession	Plate shear	Chord s	plice Load	transfer)		
			Yie	lding and net	fracture					Bl	ock shear			
		Whitmore width (in)	T (in)	Nfasteners	U	Rp	Beta (LFR)	Ltension (in)	Ttension (in)	NTfasteners	Lshear (in)	Tshear (in)	NVfasteners	NShear
Þ	Member 2	23.000		2.000	1.000	1.000	0.150	5.000		2.000	17.000		5.500	2.000
Γ	Member 3	1000.000		1.000	1.000	1.000	0.150	1000.000		0.000	1000		1.000	1.000
íE	Member 7	1000.000		1.000	1.000	1.000	0.150	1000.000		0.000	1000		1.000	1.000
	Member 8	33.000		5.000	1.000	1.000	0.150	5.000		2.000	25.500		8.500	2.000

NYSDOT GUSSET PLATE EVALUATION TOOL

- MathCAD based evaluation tool based on AASHTO MBE 3rd Edition
- Developed and maintained by HNTB
- Supports both LFD and LRFR
- More flexible than BrR, can be used for rating more complex gusset plates
- Used for validating results from BrR

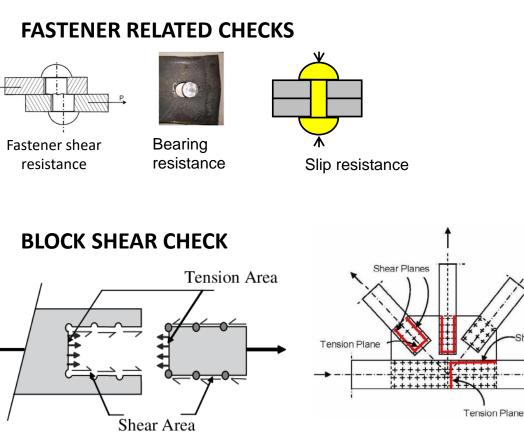
P-0228-3						
Member Angles						
$\theta_A = -90 \cdot deg$ $\theta_B = -30 \cdot deg$	B	C				
$\theta_c := 0 \cdot deg$ $\theta_c := 30 \cdot deg$		hằn		Gusset Plate Load And Resistance Fact	or Rating	Sheet: 3 of BIN:
$\theta_E = 90 \cdot deg$		1999				
			gles - Alternat	ive Entry Method Member Angles?	alt:="NO"	
	A					VERTICAL
		A _x :=-99 • in	$A_y \coloneqq 0 \cdot in$	в		LINE
Angle from Vertical members that are	 Input a positive angle for memb counter clockwise from vertical. If 	$B_{\chi} = -35 \cdot in$	$B_{\gamma} = 60 \cdot in$		CY	
Notes:		$C_x := 0 \cdot in$	$C_y \coloneqq 99 \cdot in$	ВУ	cx	DY
sketch provided ab	oint in the upper chord, rotate the j pove. sember does not exist at the joint b	D _x := 35 - in	D _y =60 • in	+Y		EX E
the gusset plate) a is because none of should be noted th 4) When entering	are the chord is continuous throug Il inputs pertaining to member A, r f the forces in the chord are being at the connection of the gusset pl 0 for an input, if the particular inpu	E _x :=99 • in	$E_{\gamma} = 0 \cdot in$	AX	AY -X -+)	HORIZONTAL REFERENCE LINE
For example, if me	mber C does not exist at the joint	Alternative Ent	ry Method Notes:			
		method variab 2) When alter deg. If not usi 3) When ente line. 4) When ente horizontal refe 5) If the memi member is loc; reference line. 6) If the memi	e alt must be set it native method is b ing members x dis erence line and a r ing members y dis rence line and a n over lies on the verti sted above the hor boot lies on the horic located to the left	to "YES" (all caps) if using the "NO" (all caps), ing used, member angles 8,4, nd y distances for all members tance input x as a positive dist segative distance is the member capture distance if the member capture distance if the member can reference line enter 0 for th contal reference line enter 0 for the vertical reference line or the the contal reference line or the or the contal reference line or the orthogonal the vertical reference line or the orthogonal the vertical reference line or the orthogonal the vertical reference line or the contal the vertical reference line or the vertical contal reference line or the vertical contal vertical contal vertical contal vertical contal vertical cont	88. 9C. 8D. and 8f should be set equations in the member is located to the list ocated below the ex distance and 9f the member is locat the y distance and	should be set equal to 0 ito 0 in. is located to the right of sft of the vertical reference is located above the horizontal reference line. for the y distance if the ad below the horizontal -09 for the x distance if

ISSUES THAT WERE RESOLVED IN BrR 7.5.1

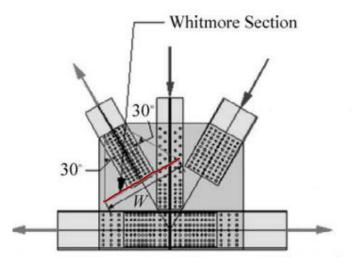

Ticket #	Issues	Status
BSSD-2370	Shear plane orientation issues: The BrR algorithm considers global vertical and horizontal shear planes instead of true planes, except for continuous chord cases.	Resolved in version 7.5.1
BSSD-2704	Global shear force resolving issues for non-collinear chord members. Due to this issue, often, some of	Resolved in version 7.5.1
BSSD-2708	the truss members' forces are not counted while calculating shear forces.	
BSSD-2738	Partial shear plane check issues: BrR sometimes issues incorrect angles to horizontal and vertical shear plans.	Resolved in version 7.5.1

From BrR 7.5.1 Release Notes:

- 13. BSSD-2370 Define custom shear plane orientation for gusset plate analysis
- 14. BSSD-2424 LRFD/LRFR longitudinal rebar rating should consider effective Aps if within transfer or development length region
- 15. BSSD-2708 Allow the user to select which members are considered above/below and left/right w.r.t. gusset plate shear plane
- 16. BSSD-2738 Improvements to gusset plate partial shear input and reporting

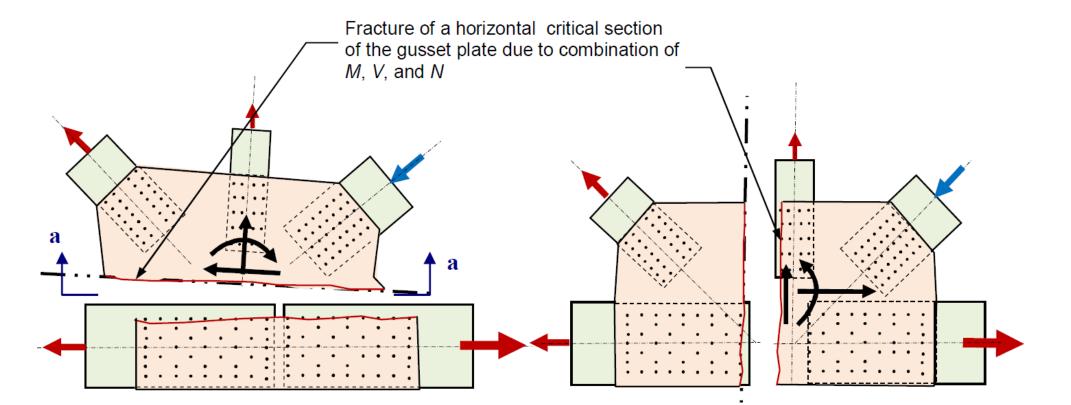

GUSSET PLATE FAILURE MECHANISMS

CHECKS FOR SINGLE MEMBER DEMANDS

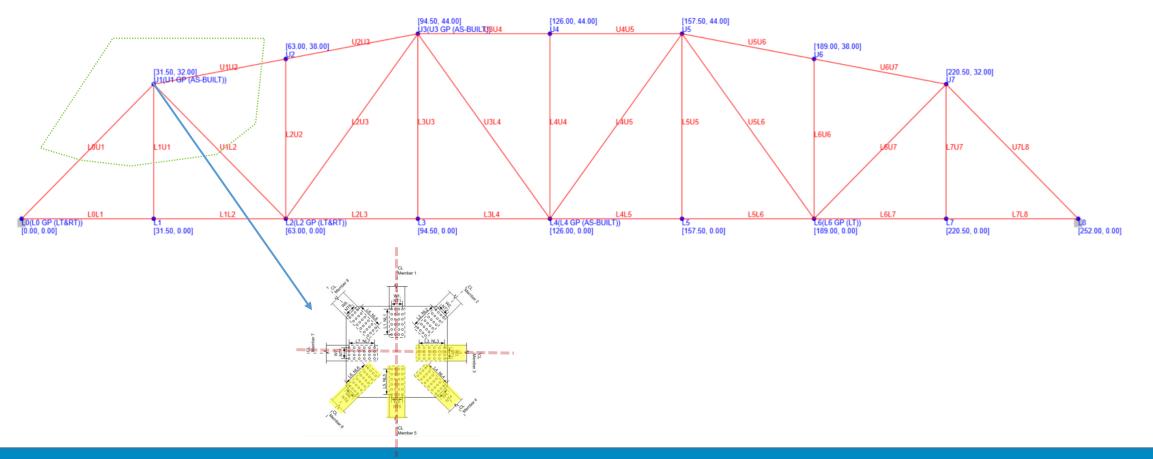

hear Plane

.

•


WHITMORE SECTION CHECKS (TENSION/COMP)

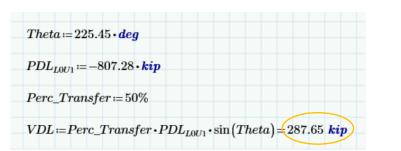
Hu, ISIJ International, Vol. 53 (2013), No. 8, pp. 1443–1452

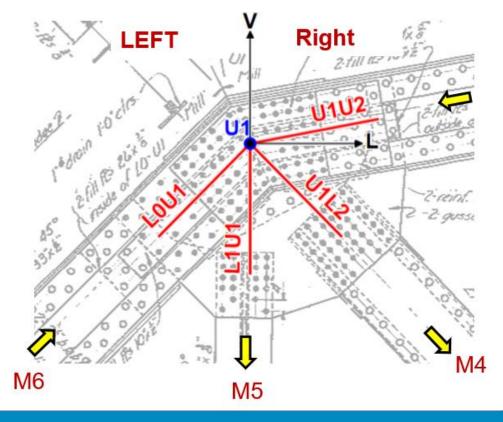

GLOBAL SHEAR – MEMBER INTERACTION FOR DEMANDS

Astaneh-Asl, Gusset Plates in Steel Bridges- Design and Evaluation, 2010

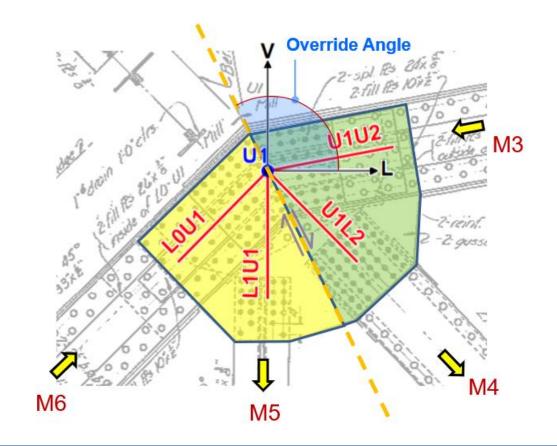
A TYPICAL TRUSS: BrR MEMBER INPUT CONVENTION

GLOBAL SHEAR: ISSUE PRIOR TO v7.5.1


- MEMBER ORIENTATION MATTERS!
- ACTUAL SHEAR PLANE IS NOT DETECTED
- ONLY LOU1 IS CONSIDERED IN DEMAND CALCULATIONS


Panel Point	Member	Theta	DL Force	LL Force	e (kip)	
(ft)	wiembei	(Degrees)	(kip)	Compression	Tension	
	L0U1	225.45	-807.28	-234.31 (L)		Ý
	U1U2	10.78	-836.05	-223.44 (L)		
U1	L1U1	270.00	134.26		108.46 (T)	U1
[31.50, 32.00]	U1L2	314.55	363.44	-35.55 (T)	122.00 (L)	
	Net Longitu	ıdinal Force:	0.00	80.0	5	Loui -
	Net Vertica	l Force:	-25.61	70.2	2	5
	ir		1	ir		

A2 = Live Load Factor



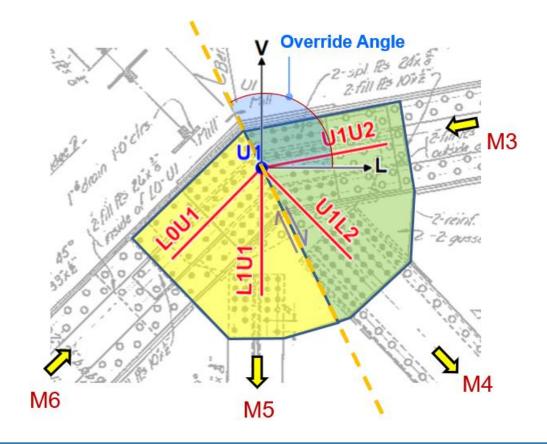
GLOBAL SHEAR – NEW OPTION: OVERRIDE ANGLE

 MBE C6A.6.12.6.6 – FAILURE OF A FULL-WIDTH SHEAR PLANE REQUIRES RELATIVE MOBILIZATION BETWEEN TWO ZONES OF THE PLATE

	Shear plane	Length	Thickness	Number	Hole diameter	Override	Override angle	Override			Mem	ber Sel	ectio	n		
	Snear plane	(in)	(in)	holes	in)	angle	(Degrees)	member selection	1	2	3	4 5	6	7	8	
>	Vertical	50.00		14.00	0.94		100.78									1
	Horizontal	64.00		16.00	0.94	Image: A start of the start	10.78									
_	: plate Same as left p	late					_									
_	Same as left p		Thickness	Number	Hole	Override	Override	Override			Memt	ber Sele	ection			
_		Length (in)	Thickness (in)	Number holes	Hole diameter (in)	Override angle	Override angle (Degrees)	Override member selection	1		Memb 3	er Sele 4 5		7	8	
_	Same as left p	Length			diameter		angle	member	1						8	

GLOBAL SHEAR – NEW OPTION: OVERRIDE ANGLE

 MBE C6A.6.12.6.6 – FAILURE OF A FULL-WIDTH SHEAR PLANE REQUIRES RELATIVE MOBILIZATION BETWEEN TWO ZONES OF THE PLATE

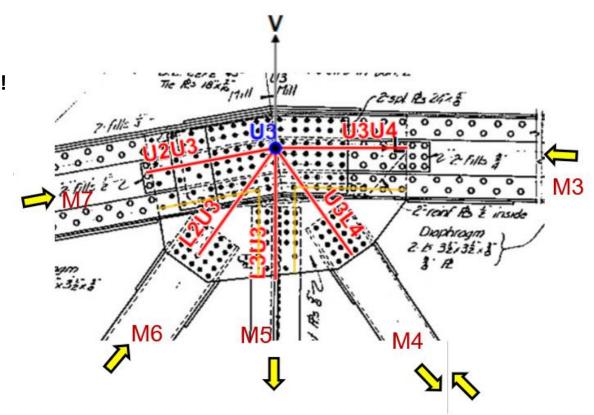

Panel Point	Member	Theta	DL Force	LL Force	e (kip)	
(ft)	Member	(Degrees)	(kip)	Compression	Tension	
	L0U1	225.45	-807.28	-234.31 (L)		Ý
	U1U2	10.78	-836.05	-223.44 (L)		
U1	L1U1	270.00	134.26		108.46 (T)	U1 U1
[31.50, 32.00]	U1L2	314.55	363.44	-35.55 (T)	122.00 (L)	
	Net Longitudinal Force:		0.00	80.0	5	John - Cit
	Net Vertica	l Force:	-25.61	70.2	2	키

VERTICAL SHEAR RATING FACTOR CALCULATIONS

RF = C - A1 * VDL(%Load)
A2 * VLL(1+1)(%Load)

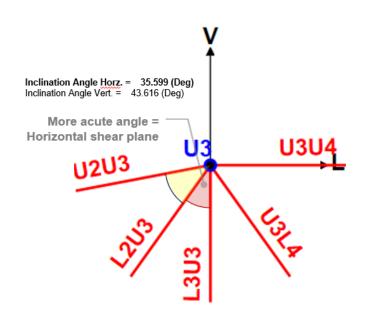
C = 1052.700 (kip) VDL Left = 97.727 (kip) VDL Right = -302.154 (kip)

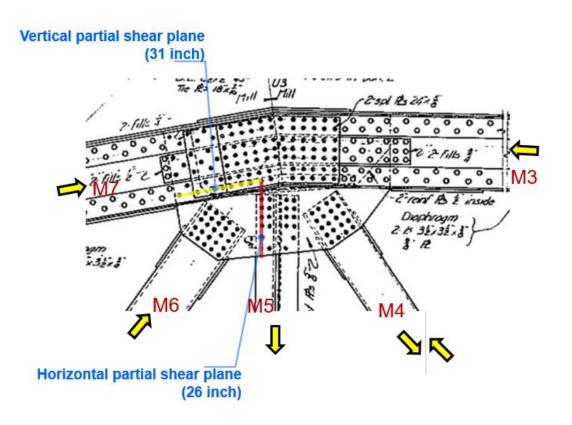
$Vertical_angle := 90 \cdot deg$
Override_angle == 100.78 • deg
$Theta_adj \coloneqq Vertical_angle - Override_angle = -10.78 \ \textit{deg}$
$Theta_{L0U1} \coloneqq 225.45 \cdot deg$
$Theta_{L1U1} = 270 \cdot deg$
$PDL_{L0U1} := -807.28 \cdot kip$
$PDL_{L1U1} := 134.26 \cdot kip$
Perc_Transfer := 50%
$ \begin{array}{l} VDL \coloneqq Perc_Transfer \cdot PDL_{L0U1} \cdot \sin\left(Theta_{L0U1} + Theta_adj\right) \\ + PDL_{L1U1} \cdot \sin\left(Theta_{L1U1} + Theta_adj\right) \end{array} = 97.72 \ \ \textbf{kip} \\ \end{array} $



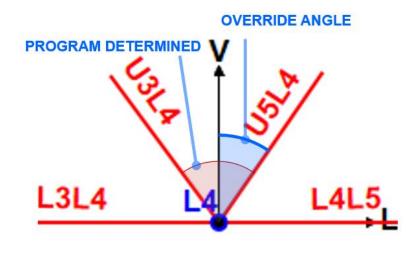
PARTIAL SHEAR PLANE INPUTS

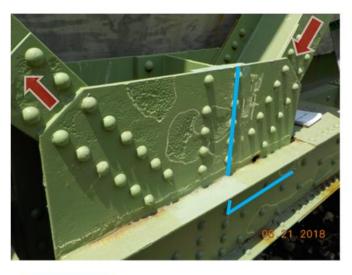
- MEMBER SELECTION IS USER DEFINED
- CONSIDER ALL LOAD COMBINATIONS FOR MEMBER SELECTIONS!


Panel Point	Member	Theta	DL Force	LL Force	(kip)	
(ft)	Wiember	(Degrees)	(kip)	Compression	Tension	
	U2U3	190.78	-836.05	-223.44 (L)		V t
	U3U4	0.00	-948.66	-252.75 (L)		
U3	L3U3	270.00	140.71		108.46 (T)	U3 U3U4
	L2U3	234.40	-115.96	-78.74 (L)	72.19 (T)	U2U3 03 0304
[94.50, 44.00]	U3L4	305.60	102.85	-57.43 (T)	83.05 (L)	
	Net Longitı	idinal Force:	0.00	108.71		A A A A A A A A A A A A A A A A A A A
	Net Vertica	l Force:	-26.38	192.8	37	

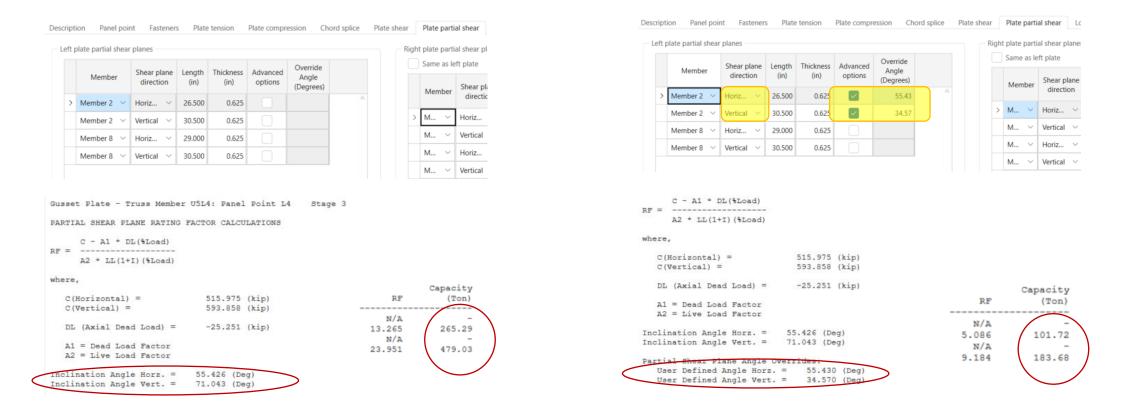


PARTIAL SHEAR PLANE INPUTS


- DEFINITION OF HORIZONTAL& VERTICAL ANGLES IS PROGRAM SPECIFIC: ACUTE ANGLE = HORIZONTAL
- MAKE SURE LENGTH INPUTS MATCH ANGLE INPUTS!



PARTIAL SHEAR – NEW OPTION: OVERRIDE ANGLE



ft p	late partial shear	planes						Righ	t plate parti	al shear planes									
		Shear plane	Length	Thickness	Advanced	Override	51		Same as le	ft plate									
	Member	direction	(in)	(in)	options	Angle (Degrees)			Member	Shear plane	Length	Thickness	Advanced	Overri Angle					
	Member 2 🗸	Horiz 🗸	29.000	29.000	0.625	0.625	0.625	0.625	0.625					member	direction	(in)	(in)	options	(Degre
	Member 2 🗸	Vertical 🗸	30.500	0.625				>	м ∨	Horiz \vee	29.000	0.531							
1									M ~	Vertical 🗸	30.500	0.531							

PARTIAL SHEAR – NEW OPTION: OVERRIDE ANGLE

Agenda:

- Overview of AASHTOWare BrR Use in Bridge Safety Assurance Program
 - Load Rating and Posting of Bridges
 - Permitting Overweight Vehicles on State Bridges
- Corroded Beam End Shear Rating with BrR
- Gusset Plate Load Rating in BrR
- Questions and Answers

