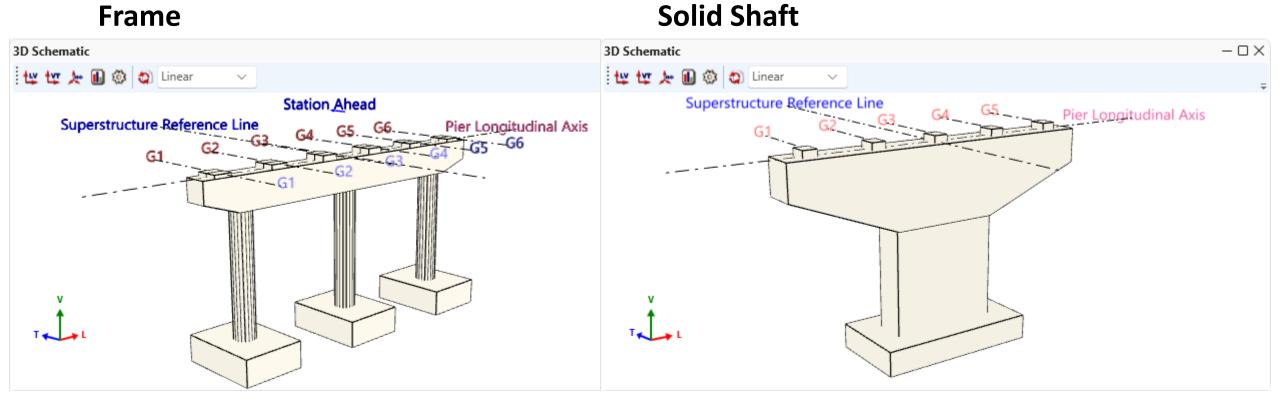


BrD Substructure Capabilities & What's Coming in BrDR 7.7

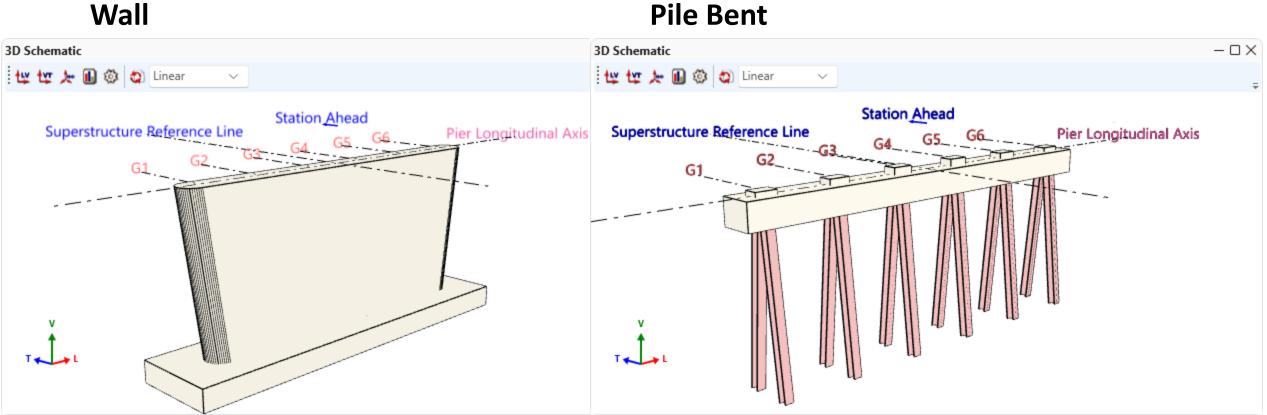
Herman Lee, P.E. herman@promiles.com

BrD Substructure Capabilities

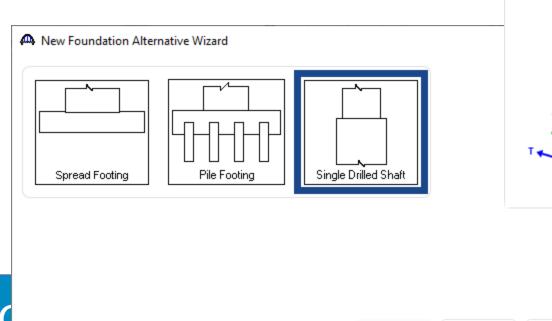
- Describe/spec check 4 types of piers
- LRFD Specifications
 - 4th Edition, 2008 interims through 9th Edition
- Integrated with BrD Superstructure or stand-alone pier
- Load transfer from BrD Superstructure
- Computed loads or user defined loads
- User control of loads and FE model


BrD Substructure Capabilities

- Schedule-based reinforcement with development length calculations
- Pier Linear finite element analysis, moment magnification
- Drilled Shaft Nonlinear finite element analysis
- Load combination generation
- Tabular and graphical FE results

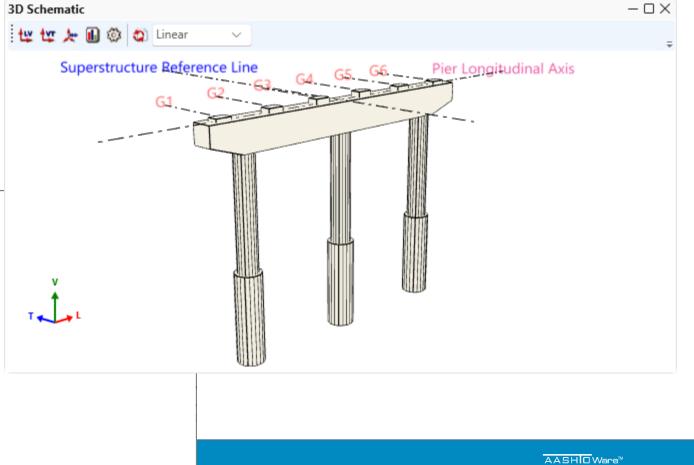

Four Types of Piers

Four Types of Piers



ProMiles

Foundation Types


- Spread
- Pile
- Drilled Shaft

< Back

Next >

Cancel

m

DESIGN AND RATING

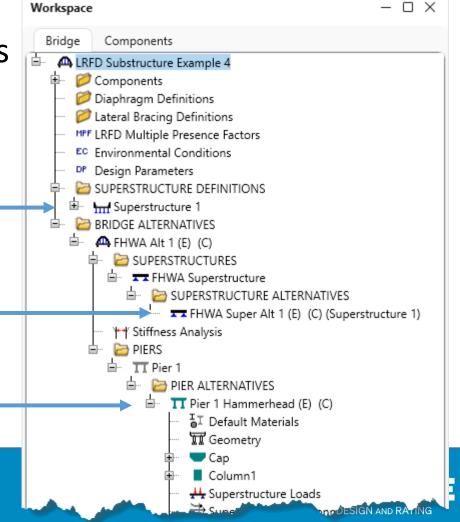
Help	
------	--

Stand-Alone Pier

- User defines girder locations
- User enters dead load reactions & superstructure loads
- User enters live load pier reactions
- BrD distributes user defined LL lanes to the girders

lame:	NORTH	I PIER WALL				Type:	RC Wall Pier	
D <u>e</u> so	ription	<u>S</u> tiffness <u>R</u> e	ports	Bearing loc	ation			
	Double l	bearing line						
Nur	nber of g	irders:		7	÷			
Dist	ance fror	n CL pier to CL be	aring line		ft			
0130	unce nor		anng mic.	0.000				
	Girder	Distance from left end (ft)						
>	G1	2.616						
	G2	13.105						
	G3	23.594						
	G4	34.083						
	G5	44.572						
	G6	55.062						
	G7	65.551						

Integration with BrD Superstructure


- Automated dead and live load computations
- Dead load and live load transfer from BrD Superstructure

ProMiles

Create a superstructure definition

Assign to a superstructure alternative

Piers support the superstructure alternative

Live Load Generation

- Longitudinal live load analysis
 - 2-D "line" analysis of superstructure to generate influence line
 - Single lane reaction without distribution factors
 - Piers supporting 2 independent superstructures are handled

Live Load Generation

• Transverse live load analysis

ProMiles

• User controls lane application

Back span				Ahead span		
Span no.:	1			Span no.:	2	
Superstructure definition:	Superstructure 1			Superstructure def	inition: Superstru	ctur
DL FR LL settings	LL-reaction L	L-distribution	BR			
Live loading type						
User defined lanes	Scan for o	ontrolling load	d positions			
O Automated						
Transverse Loading						
Vehicle increment in lan	e:	2.000	ft			
Lane increment:		4.000	ft			
Lane increments		_	-			
Move vehicle right to le	ft across travelway					
	ft across travelway					
	-				ive load positions	

Live Load Generation

Transverse live load analysis

ProMiles

• User controls distribution of single lane reaction

	pan					head span		
Span i	10.:	1			S	pan no.:	2	
Super	structure defin	ition: Superstructure	1		s	uperstructure definition:	Superstructure 1	
DL	FR LL setti	ings LL-reaction	LL-distribution	BR				
Dist	tribution meth	bo	P/2 2'-0" 6'-1	P/2 0" 2'-0"				
0	Tributary are	a						
C	Lever rule		↓ ↓ ↓ 1011					
C	Rigid deck a	ction	⊭ <u>10'1∂</u> w = (Read					
				10'				
Loa								
	Display							
	^ .		lise override v	alues O	erride			
	O Comput	ed Override	Use override v	alues	verride			
	O Comput	ed Override	Use override v	values O		out dynamic load allowa	nce	
			Single lane	Axle load	With	out dynamic load allowa	nce	
	Compute Vehicle	ed Override Vehicle type			With	out dynamic load allowa	nce	
			Single lane reaction	Axle load load P	With Uniform Ioad w	out dynamic load allowa	nce	
>	Vehicle HL-93 (US)	Vehicle type	Single lane reaction (kip)	Axle load load P (kip)	With Uniform Ioad w (kip/ft)	out dynamic load allowa	nce	

Schedule Based Reinforcement

 BrD computes the development length and takes it into consideration in the spec checks

exural	S	hear												
Long	jitudir	nal skin												
Bar	size:	8 ~ E	Bar spacing:	8.000	in	Bar material:	Grade 60	~	Stirrup	o clear cove	er: 2.5000) in		
	_	implified	Method Advanced		Reinforce	ment follows c	ap profile							
	_	implified	Advanced Vertical distance	Bar size	Reinforce Number	ment follows c Material	Start	Straight length	End distance	Hook at start	Hook at end	Developed at start	Developed at end	
	0 s	implified Measure	Advanced Vertical				Start distance (ft)	-						
	0 s	Measure from cap	Advanced Vertical distance (in)	Bar size	Number	Material	Start distance (ft) 0.500	length (ft)	distance (ft)	start	end			•

ProMiles

Pier Schematic

- Dimensions
- Zoom
- Rotate

ProMiles

- View FE model
- View FE results

Pier Loads

• Computed for you or enter your own

A Superstructure environmental load generation progress

Info: Getting computation event... Info: Using created model domain... Computing forces for Wind on Superstructure... Computing forces due to wind acting on the superstructure... Info: Wind on superstructure forces computed successfully! Info: Getting computation event... Info: Using created model domain... Generating model loads for Wind on Superstructure... Info: Overturning wind on superstructure forces computed successfully! Info: Getting computation event... Info: Overturning wind on superstructure forces computed successfully! Info: Getting computation event... Info: Using created model domain... Computing forces for Wind on Live... Computing forces due to wind acting on the live load... Info: Wind on live forces computed successfully! Info: Getting computation event... Info: Wind on live forces computed successfully! Info: Getting computation event... Info: Using created model domain... Generating model loads for Temperature on Superstructure... Generation of model loads will use User-Defined forces due to tempera Skipping computation of forces due to temperature effects on the supe

A Superstructure Environmental Loads - Pier 1 - Pier 1 Hammerhead Back span Ahead span Span no.: Span no.: Superstructure definition: Superstructure 1 Superstructure definition: Superstructure 1 WS-super WS-over WL TU SH Input AASHTO LRFD Spec Article 3.8.1.2.2 Loads from Superstructure Transverse load distribution option: Fixed & Expansion Bearings Friction velocity, VO: mph Transverse superstructure length: 120.000 Friction length, ZO: 8.20 Superstructure design elevation: Base design wind velocity, VB: 100.00 mph Design height, Z: V30: 100.00 mph Override design height, Z ft Loads for wind from left to right Display Override... Calcs... Computed () Override Use override values Superstructure longitudinal force (kip) Wind skew angle G1 G2 G3 G4 G5 (Degrees) 0 12.188 12.188 12.188 12.188 12.188 10.725 10.725 10.725 15 10.725 10.725

0.001

O OGM

0.004

-0.004

Pier Loads

 Reports are available for all computed loads

A LRFD Substructure Example 4 □ LRFD Substructure Example 4 B-FHWA Alt 1 Pier 1 Pier 1 Hammerhead SingleLaneReactions Cap LRFD Reinf Dev Length Calcs Log File Column1 LRFD Reinf Dev Length Calcs Log File SuperDLReactions2 SubDLReactions2 FrictionReactions2 Live Load Patterns BrakingForceReactions2 WindOnSubReactions2 WindLoadReactions2 (Tuesday Jul. 30, 2024 15:44:13) SuperOverturnReactions2 WindOnLiveReactions2 WaterOnSubReactions2 ShrinkageOfSuperReactions2 ShrinkageOfSubReactions2 TemperatureOnSuperReactions2 Temp MatureOnSubReactions2

A WindLoadReactions2

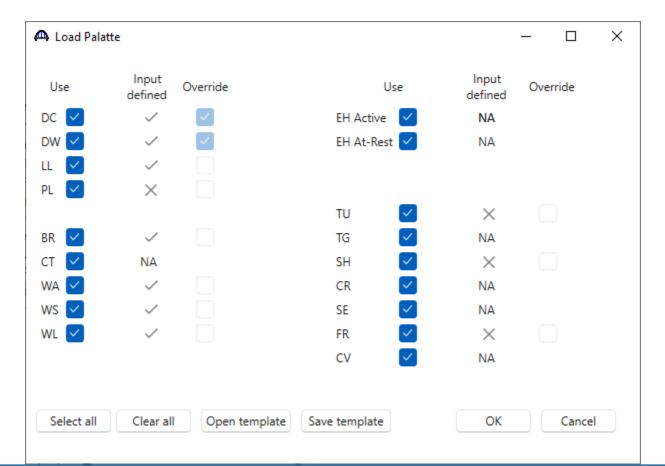
 \times

SUPERSTRUCTURE ENVIRONMENTAL LOADS: WS-SUPER

AASHTO LRFD Spec Article 3.8.1.2.2 Loads from Superstructures

BackAhead Span

Superstructure Design Elevation Calculation Maximum bearing elevation : 30.50 ft Superstructure depth at pier : 6.69 ft Appurtenance height : 3.50 ft Superstructure design elevation = 35.59 ft


<u>Design height, Z Calculation</u> Superstructure design elevation : 35.59 ft Finished ground elevation : 5.50 ft Design height Z = 35.59 - 5.50 = 30.09 ft

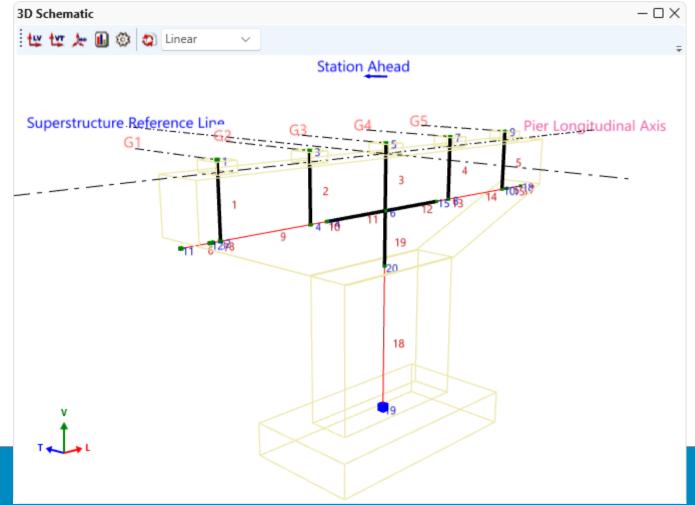
INPUT:

Transverse load distribution options : Trans. forces carried by both fix and exp bearings Transverse superstructure length : 120.00 ft Superstructure design elevation : 35.59 ft Computed design height, Z = 30.09 ft Override design height, Z = n/a. A simplified wind on live load loading is used: FALSE Consider vertical reactions due to moment caused by trans. forces: TRUE

User Control of Loads

 Load palette controls usage of load types

User Control of Loads


• Load combinations can be controlled

ProMiles

Load Combination Settings - Pie	er 1 Hammerhead		- 0
RFD substructure design settings:	Preliminary Design Setting (US)	LRFD factors: 2010	AASHTO LRFD Specifications
Chosen limit states	Settings		
STRENGTH-I	Water levels	Wind direction	Additional combinations
	Low	Left to right	Check overall stability
STRENGTH-II	Mean	Right to left	Check for deformations
STRENGTH-III	🗹 Design flood		
	Check flood		
STRENGTH-IV			
STRENGTH-V	Temperature change	Wind angles	
	- Rise	✓ 0 degrees	
SERVICE-I	🗹 Fall	15 degrees	
		30 degrees	
SERVICE-II		45 degrees	
SERVICE-III		60 degrees	
SERVICE-IV	Consider simplified wind loadin	g	pen template Save template

Finite Element Model

• Generate and view the FE model before analysis

Finite Element Analysis

- First order elastic analysis
- First order elastic analysis with moment magnification
- Non-linear analysis only piers with drilled shafts
- Load combination generation
- Force envelope generation

Tabular Results

C:\Users\HermanLee\Documents\AASHTOWare\BrDR75\LRFDSubstructureExample4\FHWAAlt1\Pier1\Pier1Ham

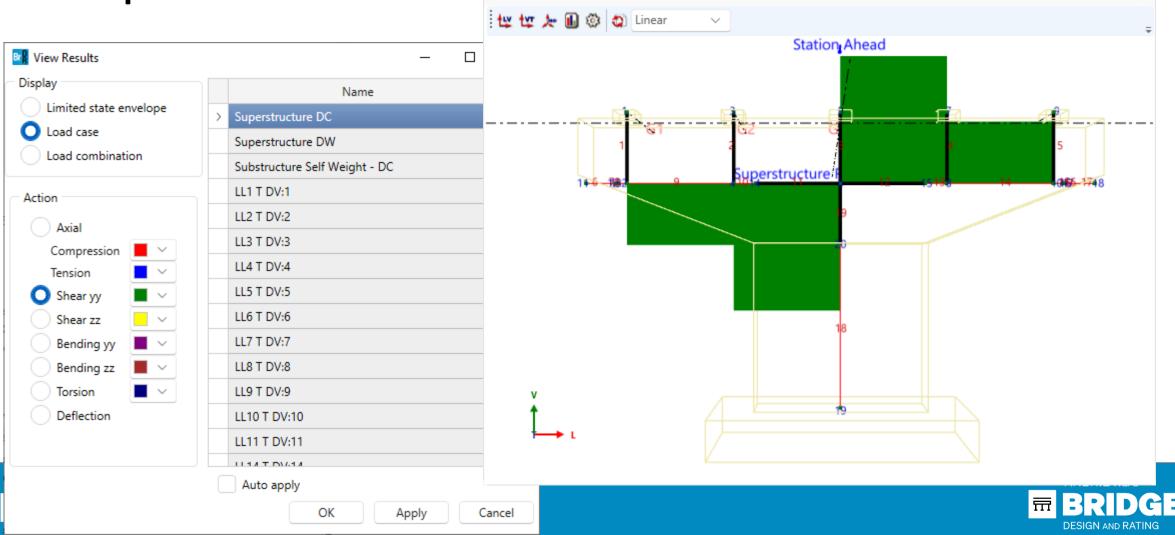
Status Fail Fail

> Pass Pass Pass Pass Pass Pass Pass Pass Pass

Pass

🧟 C:\Users\HermanLee\Docu... 🗙 📑

Specification Check Summary


	Article
eport	Cap Flexure (5.7.3.2, 5.7.3.3.2)
New Open Save Save as	Cap Shear (5.8.2.5, 5.8.2.7, 5.8.3.3, 5.8.3.5)
	Cap Serviceability (5.7.3.4 crack, 5.7.3.4 long skin, 5.10.8 shrink & temp)
odel Loads Reactions Displacements Forces Envelope Spec check results	Cap Fatigue (5.5.3.2)
	Column1 Biaxial Moment Interaction (5.7.4.5)
	Column1 Shear (5.8.2.5, 5.8.2.7, 5.8.3.3, 5.8.3.5)
✓ Nodes	Column1 Serviceability (5.10.8 shrink & temp)
Beams	Column1:Pile footing Pile Forces (5.13.3.2)
Section properties	Column1:Pile footing Flexure (5.7.3.2, 5.7.3.3.2)
✓ Materials	Column1:Pile footing Shear (5.8.3.3, 5.13.3.6.3, 5.8.3.5)
✓ Supports	Column1:Pile footing Serviceability (5.7.3.4 Crack, 5.10.8 shrink & temp)
Member releases	Column1:Pile footing Fatigue (5.5.3.2)
✓ Load cases	

NR = Spec check not required at this location

THE PARTY OF

Cap LRFD Analysis Spec Check Results

Graphical Results

3D Schematic

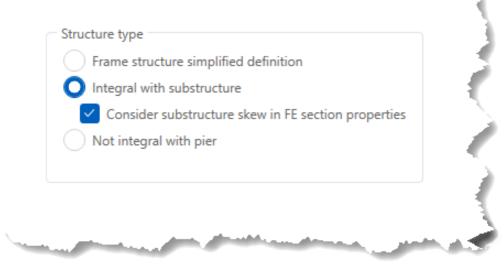
 $-\Box \times$

ProMiles

		🕞 Spec Check Detai	l for 5.7.4.5 Biaxial Flexure			_		×
Specification Checks for Pier 1 Hammerhead - 11	specification reference Specification reference Substraint Status S	Limit State STR-I STR	e full cross section Load Combination 69 69 69 69 149 61 133 45 89 113 25 157 69 157 153 65 153 65 153 65 153 173 85 173 173 85 173 173 173 173 173 173 173 173 173 173	Pu kip 3569.38 3569.38 3569.38 3569.38 2226.48 3019.18 2226.48 3019.18 2150.18 2614.28 3406.98 2776.68 3569.38 2776.68 3569.38 2776.68 2552.50 3345.20 2552.50 3345.20 2552.50 3345.20 2552.50 3345.20 2552.50 3345.20 2552.50 3345.20 2552.50	Mux kip-ft -2168.78 -2168.78 -2168.78 -2168.78 -1020.60 -1020.60 -1020.60 -1020.60 -1020.60 -2168.78 -2168.78 -2168.78 -2168.78 -2168.78 -2168.78 -1701.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -1700.00 -17	Muy kip-ft 5091.28 5091.28 5091.28 5091.28 -8166.03 -8166.03 8166.03 8166.03 6889.93 4295.73 4295.73 5091.28 5091.28 5091.28 5091.28 5091.28 5091.28 8842.75 8842.75 8842.75 -8842.75	Mi kip- 5533 5533 5533 5533 5533 8229 8229 8229 8229 8229 8229 8229 82	fur
		Limit State	Load Combination	Pu kip	Mux kip-ft	Muy kip-ft	M	fur D-f ↓

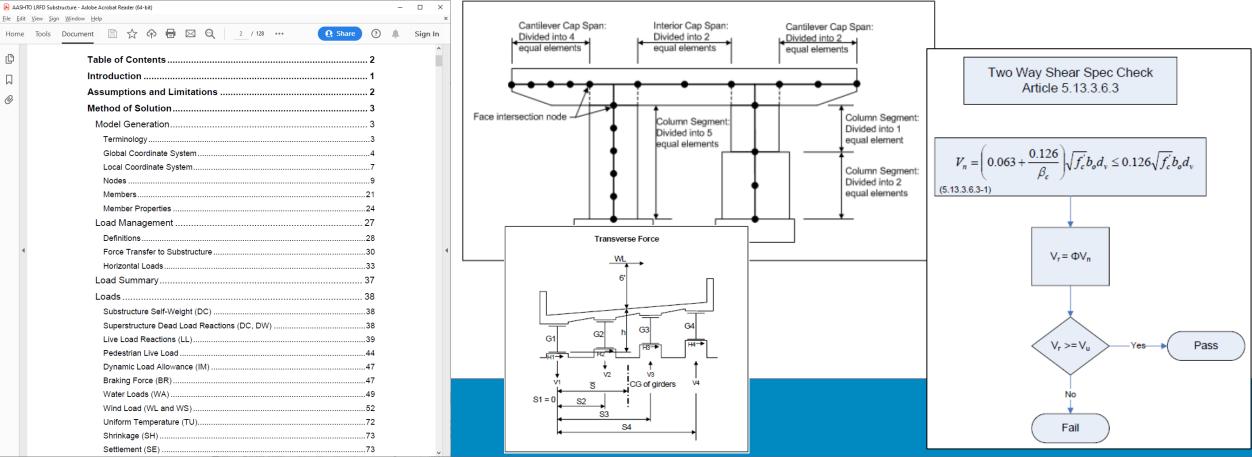
OK

Drilled Shaft Analysis


- Linear analysis
- FE model stops at the base of the columns
- Unfactored load cases applied to the pier
- Superposition and load factors used to combine into factored loads to find critical load combinations
- Factored and combined loads applied to the pier as load cases
- Soil layers are described
- FE model includes the drilled shaft and rock sockets
- Non-linear analysis of this model

Superstructure Integral with Pier

- Only available for RC Slab System and Concrete MCB
- Pier stiffness is included in the FE model for the superstructure
- Pier itself is not analyzed or spec-checked



Help

• AASHTO LRFD Substructure Method of Solution Manual

What's Coming in BrDR 7.7

- Reinforced concrete pier cap LRFR analysis
 - LRFR factors
 - Additional inputs for load rating purpose including deterioration profiles
 - Adjacent vehicle analysis and NSG vehicle analysis

Specs Factors Control Options Stiffness Reports Analysis method type Analysis module Selection type Spec version Factors ASD System Default System Default Selection type Spec version Factors	ip	ption Specs	Factors Contro	ol Options Stiffnes	ss Reports		
type Analysis module Selection type Spec version Factors ASD • System Default • •							
	4		Analysis module	Selection type	Spec version	Factors	
		ASD	-	System Default *		-	
LFD System Default		LFD		System Default *		Ψ.	

What's Coming in BrDR 7.7

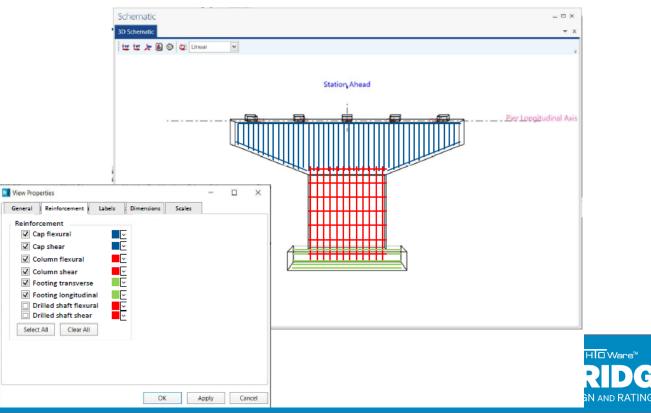
- Substructure Bridge Workspace architecture revisions
 - Associating pier alternatives to link certain pier geometry and data between alternatives
 - User fully enters a pier alternative for a pier. This pier alternative is considered as the control pier alternative.
 - For another pier within the same bridge alternative, user creates a new pier alternative of the same type and associates this new pier alternative with the control pier. This pier alternative is considered as the dependent pier alternative.

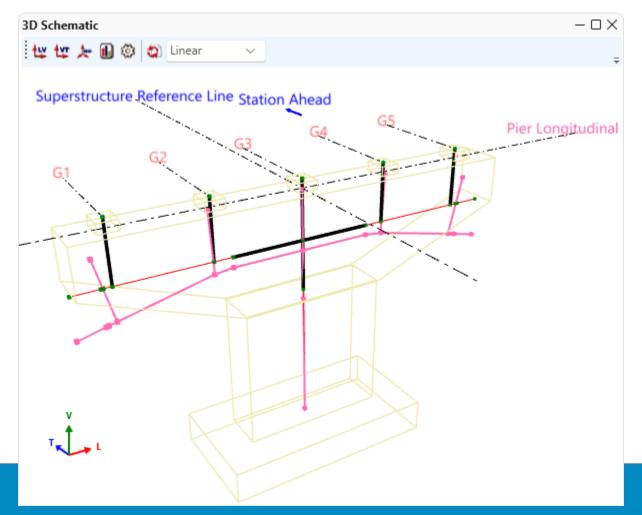
What's Coming in BrDR 7.7

- Substructure reinforcement data entry revisions
 - Control point data entry method

 Data entry method 	
Data entry metho	Ju
Oistance	Control point

Set	Pattern	① Start control point	Start distance (ft)	1 End control point	End distance (ft)	Length (ft)	Hook at start	Hook at end	Developed at start	Developed at end	Follows profile
1	Def #1 🗸	Bottom of column 🗸	-3.00	Bottom of column 🗸 🗸	7.00	10.00	Z				
2	Def #1 🗸	Bottom of column 🗸	0.00	Bottom of column 🗸	15.00	15.00					
3	Def #1 🗸	Top of column 🗸 🗸	-10	Top of column 🗸 🗸	3.00	13.00		Z			




What's Coming in BrDR 7.7

- 10 Additional Substructure TAG enhancement requests
 - 3D Schematic predefined plan view, show reinforcement
 - Copy/paste enhancement
 - Hexagon column shape

ProMiles

Thank you for your time!

