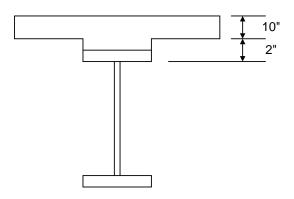


			13'-0"
			13'-0"
			13'-0"

1	6 spaces @ 26'-10"	1
	161'-0"	ĺ
		l

Framing Plan



Material Properties

Structural Steel: AASHTO M270, Grade 50W uncoated weathering steel with Fy = 50 ksi Deck Concrete: f'c = 4.5 ksi, modular ratio n = 8 Slab Reinforcing Steel: AASHTO M31, Grade 60 with Fy = 60 ksi

Transverse Stiffener Plates: 3/4" x 6" Cross Frame Connection Plates: 3/4" x 6" Bearing Stiffener Plates: 7/8" x 9"

Haunch Detail

AASHTOWare Bridge Rating and Design Training

STL1– Simple Span Plate Girder Example (BrR/BrD 6.4)

4	\					<u>- 🗆 ×</u>
	Bridge ID: Example 4a	NBI Structure ID		Femplate Bridge Completely Defined	Superstruct	tures
	Description Description	n (cont'd) Alternatives Glo	bal Reference Point Traffic			
	Name:	Example 4a		Year Built:		
	Description:					
					-	
	Location:	Sample	Length	161.00 ft		
	Facility Carried (7):	Sample	Route Number:	76		
	Feat. Intersected (6):	Sample	Mi. Post:	2.00		
	Default Units:	US Customary				
	BridgeWare Associatio	on 🔽 Virtis 🗹 Opis 🗖	Pontis	ОК	Apply	Cancel

From the Bridge Explorer create a new bridge and enter the following description data:

A		_ 🗆 ×
Bridge ID: Example 4a	NBI Structure ID (8): Example 4a Template Bridge Completely Defined	 Superstructures Culverts
Description Description	(cont'd) Alternatives Global Reference Point Traffic	Curverts
District (2):	District 1	
County:	01 Abbeville	
Owner (22):	State Highway Agency	
Maintainer:	State Highway Agency	
Admin. Area:	Unknown	
NHS Indicator:	0 Not on NHS	
Functional Class:	17 Urban Collector	
BridgeWare Association	🔽 Virtis 🔽 Opis 🗖 Pontis	
	- Virtis 🗹 Opis 🔽 Pontis	pply Cancel

AASHTOWare Bridge Rating and Design Training - STL1 - Simple Span Plate Girder Example

Close the window by clicking Ok. This saves the data to memory and closed the window.

The Bridge Workspace tree after the bridge is created is shown below:

📲 Bridge V	Workspace - Example 4a	<u>- 0 ×</u>
·- 🗛	Example 4a	
÷	🧰 Materials	
÷	🧰 Beam Shapes	
÷	🧰 Appurtenances	
	🚞 Diaphragm Definitions	
	📑 Impact / Dynamic Load Allowance	
	MPF LRFD Multiple Presence Factors	
÷	Factors	
	🚞 LRFD Substructure Design Settings	
	EC Environmental Conditions	
	DP Design Parameters	
	SUPERSTRUCTURE DEFINITIONS	
	CULVERT DEFINITIONS	
	BRIDGE ALTERNATIVES	

The tree is organized according to the definition of a bridge with data shared by many of the bridge components shown in the upper part of the tree. A bridge can be described by working from top to bottom within the tree.

To enter the materials to be used by members of the bridge, click on the	\pm	to expand the tree for
Materials.	lanced.	

📲 Bridge V	Vorkspace - Example 4a	_ 🗆 🗵
· 🖃 🗛	Example 4a	
÷	🧰 Materials	
	🧰 Structural Steel	
	🧰 Concrete	
	🧰 Reinforcing Steel	
	🧰 Prestress Strand	
	🕂 ····· 🧰 Timber	
	🛄 Soil	
÷	🧰 Beam Shapes	
÷	Appurtenances	
	Diaphragm Definitions	
	📑 Impact / Dynamic Load Allowance	
	MPF LRFD Multiple Presence Factors	
÷	Factors	
	🚞 LRFD Substructure Design Settings	
	EC Environmental Conditions	
	PP Design Parameters	
	SUPERSTRUCTURE DEFINITIONS	
	CULVERT DEFINITIONS	
	BRIDGE ALTERNATIVES	

The tree with the expanded Materials branch is shown below:

To add a new structural steel material, click on Structural Steel in the tree and select File/New from the menu (or right mouse click on Structural Steel and select New). The window shown below will open.

🗛 Bridge Materials	- Structural Steel			
<u>N</u> ame:	De <u>s</u> cri	ption:		
	Material Proper	ties		
	Specified minimum yield strength (Fy) =		ksi	
	Specified minimum tensile strength (F \underline{u}) =		ksi	
	<u>C</u> oefficient of thermal expansion =		1/F	
	<u>D</u> ensity =		kcf	
	Modulus of elasticity (\underline{E}) =		ksi	
	Copy from Library	л ОК	Apply	Cancel

Add structural steel materials by selecting from the Structural Steel Materials Library by clicking the Copy from Library button.

Name	Description	Library	Units	Fy	Fu	alpha	Density/ Unit Load	Modulus of Elasticity	
ASTM A588 - > 5" to 8" incl.	ASTM A 588 - over	Standa	US Cu	42.00	63.00	0.000	0.4900	29000.00	
ASTM A94 - <= 1 1/8"	ASTM A 94 - 1 1/8" t	Standa	US Cu	50.00	75.00	0.000	0.4900	29000.00	
ASTM A94 - over 1 1/8" to 2" incl.	ASTM A 94 - over 1	Standa	US Cu	47.00	72.00	0.000	0.4900	29000.00	
Grade 100 - > 2.5" to 4" incl.	AASHTO M270 Grad	Standa	US Cu	90.00	100.0	0.000	0.4900	29000.00	
Grade 100 <= 2.5"	AASHTO M270 Grad	Standa	US Cu	100.0	110.0	0.000	0.4900	29000.00	
Grade 100VV - > 2.5" to 4" incl.	AASHTO M270 Grad	Standa	US Cu	90.00	100.0	0.000	0.4900	29000.00	
Grade 100W <= 2.5"	AASHTO M270 Grad	Standa	US Cu	100.0	110.0	0.000	0.4900	29000.00	
Grade 250	AASHTO M270M Gr	Standa	SI / Me	250.0	400.0	0.000	7849.000	199948.00	
Grade 345	AASHTO M270M Gr	Standa	SI / Me	345.0	450.0	0.000	7849.000	199948.00	
Grade 345W	AASHTO M270M Gr	Standa	SI / Me	345.0	485.0	0.000	7849.000	199948.00	
Grade 36	AASHTO M270 Grad	Standa	US Cu	36.00	58.00	0.000	0.4900	29000.00	
Grade 485W	AASHTO M270M Gr	Standa	SI / Me	485.0	620.0	0.000	7849.000	199948.00	
Grade 50	AASHTO M270 Grad	Standa	US Cu	50.00	65.00	0.000	0.4900	29000.00	
Grade 50W	AASHTO M270 Grad	Standa	US Cu	50.00	70.00	0.000	0.4900	29000.00	
Grade 690 - > 65 to 100 incl.	AASHTO M270M - o	Standa	SI / Me	620.0	690.0	0.000	7849.000	199947.95	
Grade 690 <= 65 mm	AASHTO M270M Gr	Standa	SI / Me	690.0	760.0	0.000	7849.000	199948.00	
Grade 690W - > 65 to 100 incl.	AASHTO M270M - o	Standa	SI / Me	620.0	690.0	0.000	7849.000	199947.95	
Grade 690W ≺= 65 mm	AASHTO M270M Gr	Standa	SI / Me	690.0	760.0	0.000	7849.000	199948.00	
Grade 70W	AASHTO M270 Grad	Standa	US Cu	70.00	90.00	0.000	0.4900	29000.00	
Prior to 1905	Built prior to 1905 - s	Standa	US Cu	26.00	52.00	0.000	0.4900	29000.00	

Select the AASHTO M270 Grade 50W material and click Ok. The selected material properties are copied to the Bridge Materials – Structural Steel window as shown below.


A Bridge Materials - Structural Steel	- 🗆 🗵
Name: Grade 50W Description: AASHTO M270 Grade 50W	
Material Properties	
Specified minimum yield strength (Fy) = 50.000 ksi	
Specified minimum tensile strength (Fu) = 70.000 ksi	
Coefficient of thermal expansion = 0.0000065000 1/F	
<u>D</u> ensity = 0.4900 kcf	
Modulus of elasticity (<u>E</u>) = 29000.00 ksi	
Copy from Library OK Apply (Cancel

Add concrete materials and reinforcement materials using the same techniques. Enter the concrete material as shown below:

Bridge Materials - Concrete				<u> </u>
Name: Deck Concrete	Descrip	otion: Deck Conc	rete	
Compressive strength at 28	B days (f'c) = 4.	500	ksi	
Initial compressive str	ength (f'ci) =	1	ksi	
Coefficient of thermal	expansion = 0 .	0000060000	1/F	
Density (for d	ead loads) = 0 .	150	kcf	
Density (for modulus o	f elasticity) = 0 .	145	kcf	
Modulus of ela	sticity (Eld) = 38	865.20	ksi	
Initial modulus o	of elasticity = 0.	.00	ksi	
Pois	sson's ratio = 0 .	.200		
Composition of	f concrete = N	lormal	T	
Modulus	of rupture = 0 .	.51	ksi	
Sł	hear factor = 1 .	.000		
	opy from Library.] [OK	Apply	Cancel

Bridge Materials - Reinforcing Steel	- 🗆 🗵
Name: Grade 60. Description: 60 ksi reinforcing steel	
Material Properties	
Specified yield strength (Fy) = 60.000 ksi	
Modulus of elasticity (<u>E</u> s) = 29000.00 ksi	
<i>Littimate strength (F<u>u</u>) =</i> 90.000 ksi	
Type Plain Epoxy <u>G</u> alvanized <u>U</u> ther	
Copy from Library OK Apply Ca	ancel

To enter the appurtenances to be used within the bridge expand the tree branch labeled Appurtenances. To define a parapet double click on Parapet in the tree and input the parapet dimensions as shown below. Click Ok to save the data to memory and close the window.

Enter the impact to be used for the entire bridge by clicking on Impact in the tree and selecting File/Open from the menu. The Bridge Impact window shown below will open. Enter the appropriate values as shown and click Ok to save the data to memory and close the window. The values shown below are default values.

🚇 Bridge Impact / Dynamic Load Allowance 📃 🔍				
C Standard Impact Factor				
For structural components where impact is to be included per AASHTO 3.8.1, choose the impact factor to be used:				
● <u>S</u> tandard AASHTO impact =				
C Modified impact = times AASHTO impact				
○ <u>C</u> onstant impact override =				
- LRFD Dynamic Load Allowance				
Eatigue and fracture limit states: 15.0 $\%$				
<u>A</u> ll other limit states: 33.0 %				
OK Apply Cancel				

For this example problem we are not going to override the standard LRFD or LRFR factors so we skip to Structure Definition. We will come back to Bridge Alternatives after entering a Structure Definition.

Double click on SUPERSTRUCTURE DEFINITIONS (or click on SUPERSTRUCTURE DEFINITIONS and select File/New from the menu or right mouse click on SUPERSTRUCTURE DEFINITIONS and select New from the popup menu) to create a new structure definition. The dialog shown below will appear.

New Superstructure Definition	×
 Girder System Superstructure 	
C Girder Line Superstructure	
C Floor System Superstructure	
C Floor Line Superstructure	
C Truss System Superstructure	
C Truss Line Superstructure	
	OK Cancel

Select Girder System and the Structure Definition window will open. Enter the appropriate data as shown below:

🚇 Girder System Super	structure Definition			
Definition Analysis Sp	becs Engine			
Name:	SD1			Frame Structure Simplified Definition
Description:			×	Deck type: Concrete
Default Units: Number of spans: Number of girders:		Enter Span Lengths Along the Reference Line: Span Length (ft) 1 161.00	Y	For PS only Average humidity:
				Member Alt. Types Steel P/S R/C Timber
			(COK	Apply Cancel

Structural Slab Thickness Consider structural slab thickness for rating Consider structural slab thickness for design	Number of shell elements In the deck between girders In the web between flanges
Vearing Surface ✓ Consider wearing surface for rating ✓ Consider wearing surface for design Default Analysis Type: Line Girder ✓	Slower Faster More accurate Less accurate 10 9 8 7 6 5 4 3 2 1
Longitudinal Loading Vehicle increment: 1.000 ft	Target aspect ratio for shell elements Slower Faster More accurate Less accurate
Transverse Loading Vehicle increment in lane: 2.000 ft Lane increment: 4.000 ft	1.0 1.5 2.0 2.5 3.0 3.5 4.0

Girder System Su	perstructure D	efinition			
Definition Analysis		•			
Analysis Method Type	Analysis Module	Selection Type	Spec Version	Factors	
ASD	AASHTO AS 💌	System Default 💌	MBE 2nd, Std 17th 🛛 🚬	N/A 🔄	
LFD	AASHTO LFD 💌	System Default 💌	MBE 2nd, Std 17th 👘 🚬	2002 AASHTO Std. 🗾	
LRFD	AASHTO LRF 💌	System Default 💌	LRFD 5th 2010i 📃 🚬	2010 AASHTO LRF 🗾	
LRFR	AASHTO LRF 💌	System Default 💌	MBE 2nd, LRFD 5th 2 🚬	2011 AASHTO LRF 🗾	
				ОК	Apply Cancel

The Analysis tab and Specs tab are shown above with the default selections. Since we are not overriding default selections for this exercise, no changes are required.

Click on Ok to save the data to memory and close the window.

🜃 Bridge Workspace - Example 4a _ 🗆 × 🕰 Example 4a 🗄 💮 🛅 Materials 🗄 🖳 🚞 Structural Steel 🗄 💮 💼 Concrete 🗄 🖳 Reinforcing Steel 🔤 Prestress Strand 🗄 \cdots 📄 Timber 🛄 Soil 🗄 💮 Beam Shapes 🗄 🖳 🧰 Appurtenances \cdots 📄 Diaphragm Definitions 🛛 📑 Impact / Dynamic Load Allowance MPF LRFD Multiple Presence Factors 🗄 💮 Factors --- 🧰 LRFD Substructure Design Settings ----- Environmental Conditions ----- Design Parameters SUPERSTRUCTURE DEFINITIONS 🖻 🗝 🖬 SD1 📑 Impact / Dynamic Load Allowance Load Case Description 🛲 Framing Plan Detail - 🎹 Structure Typical Section ----- 🕂 Superstructure Loads 🗄 \cdots 🚞 Connectors -- 📄 Shear Connector Definitions 🗄 \cdots 📃 Stiffener Definitions 🖻 🗝 🚞 MEMBERS . ⊡..... **I** G1 🕂 Member Loads 🔼 Supports MEMBER ALTERNATIVES I G2 ÷ I G3 **I** G4 ÷.... CULVERT DEFINITIONS BRIDGE ALTERNATIVES

The partially expanded Bridge Workspace tree is shown below:

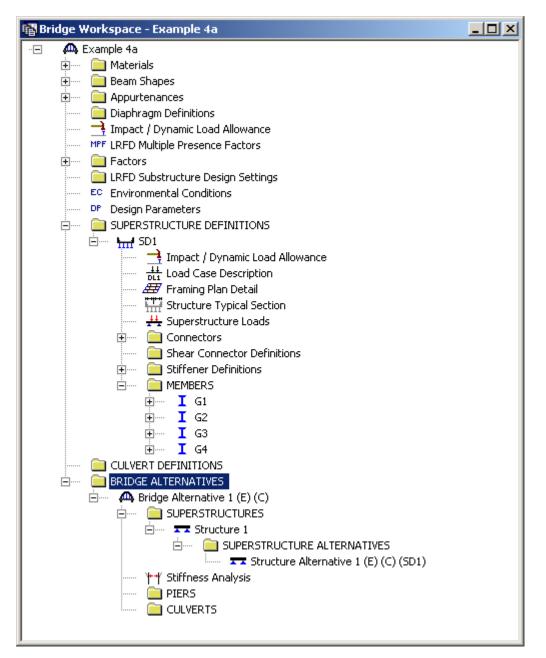
We now go back to the Bridge Alternatives and create a new Bridge Alternative by double-clicking on Bridge Alternatives. Enter the following data:

🗛 Bridge Alternative	
Alternative Name: Bridge Alternative 1	
Description Substructures	1
Description:	~
Reference Line Reference Line Length = 0.00 ft Starting Station = ft Bearing = N 0^ 0' 0.00'' E	Global Positioning Distance = -0.000 ft Offset = 0.000 ft Elevation = ft
Superstructure Wizard	
	OK Apply Cancel

Click Ok to save the data to memory and close the window.

Double-click on Superstructures and enter the following new superstructure:

A Superstructure	<u>- 0 ×</u>
Superstructure Name: Structure 1	
Description Alternatives Vehicle Path Engine Substructures	
Description:	
Reference Line	
Distance = 0.000 ft Offset = -0.000 ft	
Angle = 0.00 Degrees	
Starting Station = 0.00 ft	
OK Apply	Cancel


Double-click on Superstructure Alternatives and enter the following new Superstructure Alternative. Select the Superstructure definition SD1 as the current superstructure definition for this Superstructure Alternative.

Superstructure Altern	ative	
Alternative <u>N</u> ame:	Structure Alternative 1	
<u>D</u> escription:		A V
Superstructure Definition:	SD1	
Superstructure type:	Girder	
Number of main members:	4	
Span Length (ft) 1 161.00		
		OK Apply Cancel

Re-open the Structure 1 window and select the Alternatives tab. The Structure Alternative 1 will be shown as the existing and current alternative for Structure 1.

Superstructure	<u>- 🗆 ×</u>
Superstructure Name: Structure 1	
Description Alternatives Vehicle Path Engine Substructures	
Existing Current Superstructure Alternative Name Description Image: Comparison of the second structure Alternative1 Image: Comparison of the second structure	-
OK Apply Ca	ancel

The partially expanded Bridge Workspace tree is shown below:

Click Load Case Description to define the dead load cases. The completed Load Case Description window is shown below.

ALoad Case Description						
Г						
	Load Case Name	Description	Stage	Туре	Time* (Days)	
	DC1	DC acting on non-composite section	Non-composite (Stage 1)	D,DC 🔽		
	DC2	DC acting on long-term composite section	Composite (long term) (Stage 2) 💌	D,DC 🔽		
	DW	DW acting on long-term composite section	Composite (long term) (Stage 2) 💌	D,DW 🔽		
	SIP Forms	Weight due to stay-in-place forms	Non-composite (Stage 1) 📃 💌	D,DC 🔽		
	, *Prestressed me	Add Default Load Case Descriptions	New Duplica	ate	Delete	
				oly	Cancel	

Double-click on Framing Plan Detail to describe the framing plan. Enter the appropriate data as shown below.

Structure Framing Plan Details	×
Number of spans = 1 Number of girders = 4	
Support Skew (Degrees) 1 0.0000 2 0.0000 index Girder Spacing (trider Spacing) index Girder Girder index Girder index	
OK Apply Cancel]

Structure Framing Plan Details			
	Number of spans = 1	Number of girders = 4	
Layout Diaphragms			
Girder Bay: 1 Copy B	Bay To Diaphragm Wizard		
Number (ft) Spa	hragm Number Length acing of Spaces (ft)	End Distance (ft) Left Girder Right Girder (kip)	Diaphragm
		NewDupli	cate Delete
		ОК	Apply Cancel

Switch to the Diaphragms tab to enter diaphragm spacing.

Click the Diaphragm Wizard button to add diaphragms for the entire structure. The Dialog shown below will appear.

Diaphragm Wizard	×
Select the desired framing plan system:	
< <u>Back</u> <u>N</u> ext > Cancel	Help

Click the Next button and enter the following spacing:

Diaphragm Wizard	×
Diaphragm Spacing O Enter number of equal spaces per span C Enter equal spacing per span C Enter groups of equal spacing	
Support diaphragm load: kip	
Interior diaphragm load: kip	
Span Length Number of (ft) Equal Spaces	
1 161.00 6	
,	
< Back Finish Cancel Help	

Click the Finish button to add the diaphragms. The Diaphragm Wizard will create diaphragms for all of the girder bays in the structure.

The diaphragms created for Girder Bay 1 are shown below:

<mark>مم</mark>	truct	ure	Framing Plan I	Details								_ 🗆 🗙
Γ	Number of spans = 1 Number of girders = 4 Layout Diaphragms .											
	Girde	r Bay	: 1		Сору Вау То		Diaphragm Wizard					
	Sup Nun	port nber -	Start Di (f Left Girder		Diaphragm Spacing (ft)	Number of Spaces	Length (ft)	End Dis (f Left Girder		Load (kip)	Diaphragm	$\left[\right]$
	1	-	0.00	0.00	0.00	1	0.00	0.00	0.00		Not Assigned]
	1	-	0.00	0.00	26.83	5	134.17	134.17	134.17		Not Assigned 💌	
	1	•	161.00	161.00	0.00	1	0.00	161.00	161.00		Not Assigned 💌	
									N	sw Du	plicate Delete	2
										OK	Apply Ca	incel

Select Ok to close the window.

Next define the structure typical section by double-clicking on Structure Typical Section in the Bridge Workspace tree. Input the data describing the typical section as shown below.

Basic deck geometry:

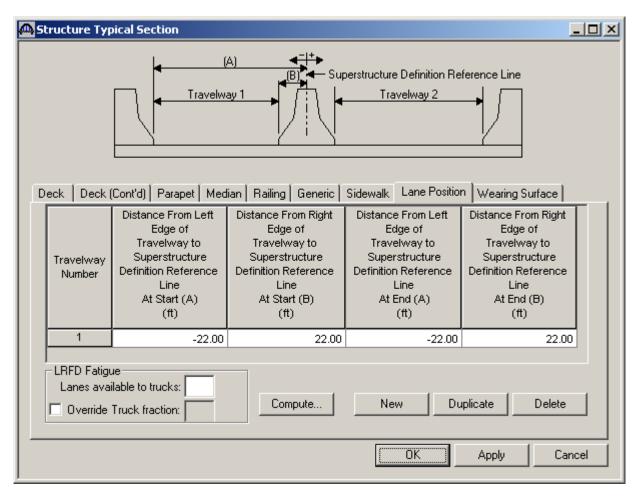
A Structure Typical Section
Distance from left edge of deck to Distance from right edge of deck to superstructure definition ref. line
Deck Superstructure Definition
Left overhang
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface
Superstructure definition reference line is within the bridge deck.
Distance from left edge of deck to superstructure definition reference line = Start End 23.75 ft 23.75
Distance from right edge of deck to superstructure definition reference line = 23.75 ft 23.75 ft
Left overhang = 4.25 ft 4.25 ft
Computed right overhang = 4.25 ft 4.25 ft
OKApply Cancel

The Deck (cont'd) tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described above.

4	Structure Typical Section	
	Distance from left edge of deck to superstructure definition ref. line Deck thickness Left overhang Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface Deck Concrete: Deck Concrete	
	Total deck thickness: 10.0000 in	
	Deck <u>c</u> rack control parameter: 130.000 kip/in	
	Sustained modular ratio factor: 3.000	
	Deck exposure factor:	
	OK Apply C	ancel

Parapets:

The two parapets are described using the Parapet tab. Click New to add a row to the table. The name of the parapet defaults to the only barrier described for the bridge. Change the "Load Case" to "DC2" and "Measure To" to "Back" (we are locating the parapet on the deck by referencing the back of the parapet to the left edge of the deck). Enter 0.0 for the "Distance at Start" and "Distance at End". Change the "Front Face Orientation" to "Right". The completed tab is shown below.


<mark> M</mark> St	ructure Typica	al S	ection						_ 🗆 ×
De	eck Deck (Cor	nt'd)	Parapet	Back Median Ra		Front Sidewalk Lane	Position Wear	ing Surface)	
	Name		Load Case	Measure To	Edge of Deck Dist. Measured From	Distance At Start (ft)	Distance At End (ft)	Front Face Orientation	
	Jersey Barrier		DC2 💌	Back 💌	Left Edge 💌	0.00	0.00	Right 💌	
	Jersey Barrier	_	DC2 💌	Back 💌	Right Edge 💌	0.00	0.00	Left 💌	
						New	Duplicate	Delete	
						OK	Apply	Ca	ancel

Lane Positions:

Select the Lane Position tab.

🕰 Struc	ture Typ	oical Section					
(A) (B) Superstructure Definition Reference Line Travelway 1 Travelway 2 (A) (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C							
Deck	Deck ((Cont'd) 🛛 Parapet 🗍 Med	ian Railing Generic	Sidewalk Lane Positio	n Wearing Surface		
	avelway Jumber	Distance From Left Edge of Travelway to Superstructure Definition Reference Line At Start (A) (ft)	Distance From Right Edge of Travelway to Superstructure Definition Reference Line At Start (B) (ft)	Distance From Left Edge of Travelway to Superstructure Definition Reference Line At End (A) (ft)	Distance From Right Edge of Travelway to Superstructure Definition Reference Line At End (B) (ft)		
LRFD Fatigue Lanes available to trucks: Override Truck fraction: Compute New Duplicate Delete							
				ОК	Apply Cancel		

Click the Compute... button to automatically compute the lane positions. A dialog showing the results of the computation opens. Click Apply to apply the computed values. The Lane Position tab is populated as shown below.

Wearing Surface:

Enter the data shown below.

A Structure Typical Section	
Distance from left edge of deck to superstructure definition ref. line Deck thickness	
Left overhang	
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface	
Wearing surface material: Asphalt	
Description: Asphalt - 25 psf	
Wearing surface thickness = 2.7800 in Thickness field measured (DW = 1.25 if checked)	
Wearing surface density = 108.000 pcf	
Load case: DW Copy from Library	
OK Apply C	Cancel

Click Ok to save the data to memory and close the window.

Define stiffeners to be used by the girders. Expand the Stiffener Definitions tree item and double click on Transverse. Select "Trans. Plate Stiffener" for stiffener type. Define the stiffener as shown below. Click Ok to save to memory and close the window. Repeat this process to define the other two stiffeners. The windows are shown below.

A Transverse Stiffener Definition	
Name: 1 Stiffener Type Single Plate Thickness 0.7500 in Material Grade 50W/ Velds Image: Image for the second sec	Top Gap: in 6.0000 in Bottom Gap: in in
	OK Apply Cancel

Carteria Contraction	
Name: Stiffener Stiffener Type Single Pair Plate Thickness 0.7500 in Material Grade 50W Welds Zap Welds Zap Welds Zap Welds Stiffener Type	Top Gap: 6.0000 in Bottom Gap: in
	OK Apply Cancel

Carteria Construction	
Name: 2 Sided Dia Conn PL Stiffener Type Single Pair Plate Thickness 0.7500 In Material Grade 50W Welds Zap Welds Zap Welds Zap Welds Zap Web Contemport Battom	Top Gap: 6.0000 in Bottom Gap: in
	OK Apply Cancel

Now define the bearing stiffeners by double clicking on Bearing (under Stiffener Definitions in the tree). Select "Trans. Plate Stiffener" for stiffener type. Define the stiffener as shown below. Click Ok to save to memory and close the window.

🗛 Bearing Stiffe	ner Definition			_ 🗆 ×
	g Stiffener	in in 9.0000 in in in in in	in in in in	
		[OK Apply	Cancel

Describing a member:

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this Member.

🕰 Member						<u> </u>
Member name:	G2		Link with:	None	•	
Description:					<u> </u>	
					Y	
	Existing Current	Member Alternative Name	Description			
<u>N</u> umber of spans:	1		-		Pedestrian load:	lb/ft
		Span Span No. Length (ft)				
		1 161.00				
				OK	Apply	Cancel

Next double click on the Member loads in the tree and select SIP Forms from the combobox. Enter the load due to stay-in-place forms as shown below.

Girder Member Loads	<u>_ ×</u>
<u>* * * * * * * * * * * *</u>	
Uniform Distributed Concentrated Settlement Load Case Name: SIP Forms	_
Span Uniform Load (kip/ft) All Spans 💌 0.078	
New Duplicate Delete	<u> </u>
OK Apply Ca	ncel

Member loads for Example 4

Example	Struct Def	Member Definition	Loads(Interior beam, Exterior beam)
а	GS	Schedule-based	SIP (0.078, 0.039)
b	GL	Schedule-based	SIP (0.078,0.039)
			Barrier (DC2) (0.253, 0.253)
			WS (DW) (0.275, 0.275)
с	GL	Cross-section based	SIP (0.078, 0.078)
			Barrier (DC2) (0.253, 0.253)
			WS (DW) (0.275, 0.275)
			Haunch (DC1) (0.017, 0.059)
d	GS	Cross-section based	SIP (0.078, 0.078)
			Haunch (DC1) (0.017, 0.059)

The Help topic "Dead Loads" summarizes for each type of structure definition and member modeling method which dead load components are computed automatically by the engine and which must be entered by the user.

Supports	;					_ 🗆 ×
General	Z [✔]	×			2	
Support Number	Support Type	Translation Cor	nstraints Y	Rotation Constraints Z		
	Pinned					
2	Roller					
				OK	Apply	Cancel

Support constraints were generated when the structure definition was created and are shown below.

Defining a Member Alternative:

Double-click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select Steel for the Material Type and Plate for the Girder Type.

New Member Alternative	×
Material Type: Steel	Girder Type: Plate
	OK Cancel

Click Ok to close the dialog and create a new member alternative.

The Member Alternative Description window will open. Enter the appropriate data as shown below. Select Schedule-based Girder property input method.

If we now re-open the Member G2 window, we will see this Member Alternative designated as the existing and current member alternative for this Member.

🕰 Member							- D ×
Member name:	G2		Link with:	None	•		
Description:					A		
					v		
	Existing Current Member A	Iternative Name	D	escription			
	Plate Gird	er A	Add additional se	lf-weight for steel	details		
Number of spans:	_	Span			<u>P</u> edestrian l	oad:	lb/ft
	Span No.	Length					
		(ft) 161.00					
		101.00					
				OK.		Apply	Cancel

Use "Compute" button to generate distribution factors.

ive Load Di	stribution						_0
itandard LF	ifd						
	n Factor Input Metho e Simplified Method		anced Method				
Lanes		Distribution (Whee				-	
Loaded	Shear	Shear at Supports	Moment	Deflection			
1 Lane	1.538462	1.538462	1.538462	0.500000			
Multi-Lane	2.363636	2.461538	2.363636	1.350000			
Compute fro	om Stion View Calca	8					
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				01	. 1	Apply	Cancel

Live load distribution factor calculation details can be viewed by clicking "View Calcs" button.

Next describe the girder profile by double clicking on Girder Profile in the tree. The window is shown below with the data describing the web.

Girder P	rofile									
fype: Pla	ate Girder									
Web	Top Flange	Bottom	Flange							
Begin Depth (in)	Depth Vary	End Depth (in)	Thickness (in)	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	Material	Weld at Right	
69.00	None 💌	69.00	0.5000	1 💌		161.00		Grade 50W		
							New	Duplica	ate Do	elete
							0	K Ap	ply	Cancel

Describe the flanges as shown below.

4	Girder I	Profile													Ľ
	Type: P	ate Giro Top Fla		 om Fla	ange	•									_1
	Begin Width (in)	End Width (in)	Thickness (in)	Sup; Num	oort ber	Start Distance (ft)	Length (ft)	End Distance (ft)	Material		Weld	Weld at Right			
	22.00	22.00	1.2500	1	•	0.00	161.00	161.00	Grade 50VV	•	-	•			
				1							1		1		
	Сору	to Bott	om Flange]					New	,		Duplicate	;	Delete	
									0	IK		(Appl	у)	Cancel	

Enter the following starting distance and length to the bottom flange tab.

starting distance	bottom flange
0	36.666
36.666	87.667
124.333	36.667

<u>M</u>	Girder P	rofile											_ 🗆	×
	Type: Plate Girder Web Top Flange Bottom Flange												1	
	Begin Width (in)	End Width (in)	Thickness (in)	Supp Num		Start Distance (ft)	Length (ft)	End Distance (ft)	Material		Weld	Weld at Right		
	22	22	1.25	1	•	0	36.67	36.67	Grade 50VV	•	-	•		
	22	22	2.0000	1	•	36.67	87.67	124.33	Grade 50W	•	-	-		
	22	22	1.25	1	•	124.33	36.67	161.00	Grade 50W	•	•	-		
	Copy to Top Flange New Duplicate Delete													
									(OK			Apply	Cancel	

Next open the Deck Profile and enter the data describing the structural properties of the deck. The window is shown below.

MD	eck Profile											<u>_ ×</u>
Ту	pe: Plate		_									
	eck Concrete Reir	nforcemer	nt Shear C	onnector	s							
	Material	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	Structural Thickness (in)	Start Effective Flange Width	End Effective Flange Width	Start Effective Flange Width	End Effective Flange Width	n	
	Deck Concrete 💌	1 💌	0.00	161.00	161.00	9.5000	114.0000	114.0000	125.0000	125.0000	8.00	
	Compute from Typical Section							New	Duplic	ate	Delete	
								OK		Apply	Car	ncel

No reinforcement is described. Composite regions are described using the Shear Connectors tab as shown below.

Deck	Prof	île								
	Plate Conc		inforcem	ent Shea	ar Connectors					
	pport imber	Start Distance (ft)	Length (ft)	End Distance (ft)	Connector ID	Number per Row	Number of Spaces	Transverse Spacing (in)		
	-	0.00	161.00	161.00	Composite 📘	·				
) hear		View (Cales			New	Duplicate	Dele	te
	Vizaro	J					14000			
							(OK	Apply	C	ancel

The haunch profile is defined by double clicking on Haunch Profile in the tree. The window is shown below.

Interior Girder (G2):

Exterior Girder (G1):

Aunch Profile	
Haunch Type:	Embedded flange
	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $
	Support NumberStart Distance (ft)Length (ft)End Distance (ft)Z1Z2Z3Z4Y1Y2(in)(in)(in)(in)(in)(in)(in)(in)(in)(in)
	1 2 0.00 161.00 161.00 11.00 11.00 11.00 51.00 2.00 2.00
	New Duplicate Delete
	OK Apply Cancel

Regions where the slab is considered to provide lateral support for the top flange are defined using the Lateral Support window shown below. It can be opened by double clicking on Lateral Support in the tree.

🕰 Lateral Supp	oort			
↓	Start Distan		ength	
Support Number	Start Distance (ft) 0.00	Length (ft) 161.00	End Distance (ft) 161.00	
				New Duplicate Delete

\land st	iffener Range	s						
Tr	ransverse Stiffen		Т	Spacing	ges			1
	Name	Support Number	Start Distance (ft)	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)	
	Apply at Diaphrag		tiffeners betweer iaphragms			New Du	plicate D	elete
						OK	Apply	Cancel

Stiffener locations are described using the Stiffener Ranges window shown below.

Click on the Apply at Diaphragms... button to open the following dialog. Select the 2 Sided Conn PL as the stiffener to apply at the interior diaphragms.

Diaphragm Connection Plates	×
Apply the following stiffener definitions to the diaphragm locations:	
End Diaphragms and Diaphragms At Piers	
Bearing Stiffener: Bearing Stiffener	
Interior Diaphragms	
<u>I</u> ransverse Stiffener: 2 Sided Dia Conn PL	
Apply	Cancel

Selecting Apply will create the following transverse stiffener locations.

Stiffener Ranges									
Start Distance Spacing Transverse Stiffener Ranges Longitudinal Stiffener Ranges									
NameSupportStart Distance (ft)Number of SpacesSpacing (in)Length (ft)End Distance (ft)									
2 Sided Dia Conn PL	-	1 🔳	26.833333	1	0.0000	0.00	26.83		
2 Sided Dia Conn PL	•	1 🗾	26.833333	4	322.0000	107.33	134.17		
Apply at Diaphragms Diaphragms New Duplicate Delete									
					OK	Apply	Cancel		

The intermediate transverse stiffeners are now located. Note that a range does not include a stiffener at the beginning of the range. The range that begins at the left end of the beam with one space and a spacing of 58 inches locates the first stiffener. The remaining intermediate stiffeners are located as follows.

tiffener Ranges								
Support Start Number of Spacing Length End Name Support Distance Spaces (in) (ft) (ft)								
2 Sided Dia Conn PL 🔽 1 💌 26.83 1 0.0000 0.00 26.83								
2 Sided Dia Conn PL 🔽 1 🔽 26.83 4 322.0000 107.33 134.17								
Stiffener	▼	1	•	0.00	1	58.0000	4.83	4.83
Stiffener	▼	1	•	0.00	1	161.0000	13.42	13.42
Stiffener	T	1	T	13.42	5	322.0000	134.17	147.59
Stiffener	T	1	T	147.58	1	103.0000	8.58	156.16
Apply at Diaphragms New Duplicate Delete								
			_			OK		Cancel

Bearing stiffener definitions were assigned to locations when we used the Apply at Diaphragms... button on the Transverse Stiffener Ranges window. The Bearing Stiffener Location window is opened by expanding the Bearing Stiffener Locations branch in the tree and double clicking on each support. The assignment for support 1 is shown below.

🗛 Bearing Stiffener	Location - Suppo	ort 1	_ 🗆	×
<u>P</u> airs of bearing sti at this support =			* Negative offset to left of cl bearing 10000 in	
Stiffener Pair	Name	Offset (in)		
1 Be	aring Stiffener	0.0000		
	[ОК	Apply Cancel	

Define Points of Interest using the Points of Interest window shown below. A window for defining a Point of Interest is opened by double clicking on the Points of Interest tree item.

🕰 Point of Interest						_O×
Distance from leftmost support:	📅 ft 🛛 o'	r <u>S</u> par	n: Span 1 💌	Eraction: 0.22774	13 Side	eft • <u>B</u> ight
Transverse Stiffeners (Transverse Stiffener)ther Stiffeners 🛛 Fa	atigue	Bracing ASD	Engine		1
<u> </u>	ule					
<u>S</u> tiffener spacing =	in					
Stiffener <u>w</u> idth =	in					
Stiffener <u>t</u> hickness =	in					
<u>M</u> aterial	Grade 50W	-				
Number	Single	-				
Туре:	Plate	-				
·						
				ОК	Apply	Cancel

The description of an interior beam for a structure definition is complete.

This example bridge is modeled after Example 1 from "Four LRFD Design Examples of Steel Highway Bridges", Volume II, Chapter 1B of the Highway Structures Design Handbook produced by the American Iron and Steel Institute except this example bridge is not skewed like the one in the handbook.

To do LRFR Design	Load Rating.	enter the	Analysis	Settings	window a	s shown	below:

C Design Review		
O Design neview (• hating	Rating Method: LRFR	•
Analysis Type:		
Line Girder		
Lane/Impact Loading Type:		
As Requested 🔽	Apply Preference Setting: None	•
ehicles Output Engine Description		
Traffic Direction	- Hetresh	Temporary Vehicles Advanced
Vehicle Selection:	Vehicle Summary:	
	Add to 😑 Rating Vehicl	es
H 15-44	Rating ⊡ LRFR	- L I D - V -
H 20-44		yn Load Rating hventory
		- HL-93 (US)
HS 15-44	Bomouro	perating
HS 20 (SI) HS 20-44	from	HL-93 (US)
Lane-Type Legal Load		atigue LRFD Fatigue Truck (US)
- LRFD Fatigue Truck (SI)		Load Rating
- LRFD Fatigue Truck (US)		loutine
- NRL		pecialized Hauling
SU4	I Permi	it Load Rating
SU5	-1	
1 1 1 300	•	
Reset Clear Open Template :	ave Template	OK Apply Cancel

AASHTO LRFR results for HL93 loading for an interior girder are shown below:

🕰 Analysis F	Results - Plate	Girder											_	
Report Type Rating Resu	ults Summary		e/Impact Loa As Requested			y Format ole rating leve	ls per row		•					
Live Load	Live Load Type	Rating Method	Inventory Load Rating (Ton)	Operating Load Rating (Ton)	Legal Load Rating (Ton)	Permit Load Rating (Ton)	Inventory Rating Factor	Operating Rating Factor	Legal Rating Factor	Permit Rating Factor	Inventory Location (ft)		Operating Location (ft)	Ope Loc Spai
HL-93 (US)	Truck + Lane	LRFR	16.38	21.23			0.455	0.590			80.50	1 - (50.0)	80.50	1-(
HL-93 (US)	Tandem + Lane	LRFR	19.43	25.19			0.540	0.700			80.50	1 - (50.0)	80.50	1 - (
•														Þ
AASHTO LR	FR Engine Versio	on 6.4.0.2003												
	-													
Analysis Prer	erence Setting: N	ione												
													Close	•

An LRFD design review of this interior girder for HL93 loading can be performed by AASHTO LRFD. To do LRFD design review, enter the Analysis Settings window as shown below:

• Design Review • Rating Design Method: LRFD Analysis Type: Line Girder Lane/Impact Loading Type: As Requested Apply Preference Setting: None /ehicles Dutput Engine Description /ehicles Dutput Engine Description Vehicle Selection: Traffic Direction: Vehicle Selection: Add to Vehicles Add to Atternate Military Loading Add to HL-33 (IS) Add to HL-33 (IS) Permit Loads HL-33 (IS) Permit Loads HL-33 (IS) Permit Loads HL-83 (IS) Analysis LRFD Fatigue Truck (IS) Analysis LBFD Fatigue Truck (IS) Analysis User Defined Cenined User Defined	Analysis Settings	
Line Girder Lane/Impact Loading Type: As Requested Add to Design Vehicles Both directions Add to Design Add to Desig	Design Review C Rating	Design Method: LRFD
Both directions Herrish Temporary Vehicles Advanced Vehicle Selection: Vehicle Summary: Image: Vehicles Add to Design Image: Vehicles Add to Design Image: Vehicles Image: Vehicles Image:	Line Girder	pply Preference Setting: None
	Both directions Vehicle Selection: Vehicles Standard Alternate Military Loading HL-93 (S1) HL-93 (US) HS 20 (S1) HS 20 (S1) HS 20-44 ERFD Fatigue Truck (S1) ERFD Fatigue Truck (US) Agency User Defined	▼ Vehicle Summary: Add to Design Vehicles Design ⊡ Design Loads >> □ >> □ Permit Loads □ □ □ Permit Loads □ □ □ </td

A summary of the specification checks is shown by selecting the View Spec Check button, *(i)*, from the toolbar. The details for one of the spec checks is shown below.

Specification Checks for Plate Girder	- 41 of 949		
🖃 🧰 Superstructure Component	Specification Reference	Limit State	Flex. Sense 🔺
🗄 💼 Stage 1	📔 1.3.2.1 Design Philosophy - Limit State - General		N/A
🗄 💼 Stage 2	2.5.2.6.2 Criteria for Deflection		N/A
🖻 💼 Stage 3	🖺 4.6.2.7.1 I-Sections - Lateral Wind Load Distribution in Multibeam Bridges		N/A
🖻 💼 Plate Girder	📑 5.4.2.6 Modulus of Rupture		N/A
	🗎 6.10.1.1.1b Stresses for Sections in Positive Flexure		N/A
— 🦲 Span 1 - 13.42 ft.	Spec Check Detail for 6.10.4.2.2 Flexure		N/A
			N/A
— 🧰 Span 1 - 26.83 ft.	6 Steel Structures	▲	N/A
🗀 Span 1 32.20 ft.	6.10 I-Section Flexural Members		N/A
	6.10.4 Service Limit State		N/A
	6.10.4.2 Permanent Deformations		N/A
— 🧰 Span 1 - 48.30 ft.	6.10.4.2.2 Flexure		N/A
— 🧰 Span 1 - 53.67 ft.	(AASHTO LRFD Bridge Design Specifications, Fifth Edition - 2010, with 2010 interims)		N/A
— 🧰 Span 1 - 64.40 ft.			N/A
— 🧰 Span 1 - 67.08 ft.	Steel Plate - At Location = 96.6000 (ft) - Left Stage 3		N/A
			N/A
— 🧰 Span 1 - 93.92 ft.			N/A
	INPUT:		N/A
— 🧰 Span 1 - 107.33 ft.	Web D = 69.0000 (in)		N/A
💼 Span 1 - 112.70 ft.	Web tw = 0.5000 (in)		N/A
Span 1 - 120.75 ft.			N/A
💼 Span 1 - 124.33 ft.	Top Flange Fy = 50.0000 (ksi)		N/A
🚞 Span 1 - 128.80 ft.	Bot Flange Fy = 50.0000 (ksi)		N/A
🧰 Span 1 - 134.17 ft.			N/A
🧰 Span 1 - 144.90 ft.	Section Type: Composite		N/A
🧰 Span 1 - 147.58 ft.	Compactness: Compact		N/A
	Allow Moment Redistribution Control Option: No		N/A
	Moment Redistribution Qualified: No, Moment Redistribution did not occur.		N/A
	Noncomposite in Negative Flexure Regions Only: No		N/A
	SUMMARY:		N/A
	SUITART.		N/A
			N/A
		<u> </u>	N/A
			N/A
			N/A
	OK		N/A
			N/A
	APPD6.2 Yield Moment		N/A
	APPD6.3.1 In the Elastic Range (Dc)		N/A
	APPD6.3.2 Denth of the Web in Compression at Plastic Moment		N/A
I			

AASHTO LRFD analysis will generate a spec check results file. Click of on tool bar to open the following window.

🕰 Example 4a	<u> </u>
Example 4a SD1 G2 Plate Girder AASHTO_LRFD Summary of computed distribution factors Detailed calculations of computed distribution factors Spec Check Results (Tuesday Jul 24, 2012 17:26:08) Log File AASHTO_LRFR Summary of computed distribution factors Detailed calculations of computed distribution factors Detailed calculations of computed distribution factors Log File Log File Log File 	

To view the spec check results, double click the Spec Check Results in this window.

C'\Documents and Settings\XLI\My	y Documents\AASHTOWARE\VirtisOpis64	\Example4a\SD1\G2\PlateGirder - Windows Int	ernet Explorer				X
C:\Documents and Sett	ingsl/tLi(My Documents\AASHTOWARE\VirtisOpi	s64lExample4alSD1\G2lPlateGirder\AASHTO_LRFD\Sta	ge 3 Spec Check Result	s.XML		💌 💀 🗙 🚼 Google	. م
File Edit View Favorites Tools	Help						
🙀 Favorites 🛛 🙀 💰 Free Hotmal	🙋 Web Slice Gallery 💌						
C:\Documents and Settings\VIL/(My Docu	uments\AASHT					📩 • 🖸 - 🗆 🖷 • Pa	pe + Safety + Tools + 🔞 + 🥬
Bridge ID : 26 Bridge : Example 4a Superstructure Def : SD Member : G2 Analysis Preference Sett	ing : None	NBI Structure ID : I Bridge Alt : Member Alt : Plate	-				<u> </u>
AASHTO LRFD Specifi	ication, Edition 5, Interim 2	010					
Specification C	Check Summary						
	Article		Status				
Flexure (6.10.7.1.1, 6	.10.7.2.1 , AppA6.1.1, App.	A6.1.2, AppA6.1.3, AppA6.1.4)	Fail				
	Shear (6.10.9)		Pass				
	Fatigue (6.10.5.3))	Pass				
	Serviceability (6.10.4.	2.2)	Fail				
Constru	uctability (6.10.3.2.1, 6.10.3	3.2.2, 6.10.3.2.3)	Pass				
Trans	verse Stiffeners (6.10.11.1.	2, 6.10.11.1.3)	Pass				
Longitudinal	Stiffeners (6.10.11.3.1, 6.1	0.11.3.2, 6.10.11.3.3)	NA				
Bearing St	tiffeners (6.10.11.2.2, 6.10.	11.2.3, 6.10.11.2.4)	Pass				
S	hear Connector (6.10.10.1,	6.10.10.4)	NA				
Location (ft)	Composite	d Compactness (Sta Proportion Code	nge 3) ^{Code} Check	Compact	Code Check]	
0.000	Yes	Pass		Compact	E		
16.100	Yes	Pass		Compact	E		
32.200	Yes	Pass		Compact	E		
36.666	Yes	Pass		Compact	E		
48.300	Yes	Pass		Compact	E		
64.400	Yes	Pass		Compact	E		
80.500	Yes	Pass		Compact	E		
96.600	Yes	Pass		Compact	E		
112.700	Yes	Pass		Compact	E		-
Done						My Computer	🖓 • 🔍 135% • 🏾