PS1 - Simple Span Prestressed I Beam Example

Typical Section

Material Properties

Beam Concrete: f'c = 6.5 ksi, f'ci = 5.5 ksi Deck Concrete: f'c = 4.5 ksi Prestressing Strand: 1/2" dia., 7 Wire strand, Fu = 270 ksi, Low Relaxation

Weight = 300 plf

Parapet Detail

AASHTOWare Bridge Rating and Design Training

PS1 - Simple Span Prestressed I Beam Example (BrR/BrD 6.4)

From the Bridge Explorer create a new bridge and enter the following description data:

Bridge ID: PS1 Training Bridge NBI Structure ID (8): PS1 Tr. Bridge Didge Completely Defined Culverts
Description Description (cont'd) Alternatives Global Reference Point Traffic
Name: PS1 1Span Training Bridge Year Built:
Description: This is PCI design example 9.9.3, which uses the Load Factor Design (LFD).
Location: Length: ft
Facility Carried (7): Boute Number:
Feat. Intersected (6): Mi. Post:
Default Units: US Customary
BridgeWare Association Virtis V Opis Pontis OK Apply Cancel

Close the window by clicking Ok. This saves the data to memory and closes the window.

To enter the materials to be used by members of the bridge, click on the Materials. The tree with the expanded Materials branch is shown to expand the tree for below:

 $\left| + \right|$

🙀 Bridge Workspace - P51 Training Bridge	
🗛 PS1 Training Bridge	
🚊 🚥 Materials	
🧰 Structural Steel	
🚞 Concrete	
🧰 Reinforcing Steel	
🧰 Prestress Strand	
🕂 🚥 Timber	
📖 🧰 Soil	
📺 🚥 Beam Shapes	
📺 ····· 🧰 Appurtenances	
🧰 Diaphragm Definitions	
📑 Impact / Dynamic Load Allowance	
MPF LRFD Multiple Presence Factors	
📺 🚥 Factors	
📖 📄 LRFD Substructure Design Settings	
EC Environmental Conditions	
DP Design Parameters	
🚞 SUPERSTRUCTURE DEFINITIONS	
CULVERT DEFINITIONS	
📄 BRIDGE ALTERNATIVES	

To add a new concrete material click on Concrete in the tree and select File/New from the menu (or right mouse click on Concrete and select New). The window shown below will open.

Bridge Materials - Concrete	
<u>Name:</u>	Vescription:
Compressive strength at 28 days (f'c	l = ksi
Initial compressive strength (f'ci	= ksi
<u>C</u> oefficient of thermal expansion	= 0.0000060000 1/F
Density (for dead loads)= kcf
Density (for modulus of elasticity)= kcf
Modulus of elasticity (Ec) = ksi
Initial modulus of elasticity	l= ksi
Poisson's ratio	0.200
Composition of concrete	= Normal
Modulus of <u>r</u> upture	e ksi
<u>S</u> hear factor	= 1.000
[Copy from]	ibrary OK Apply Cancel

Add the concrete material "PS 6.5 ksi" that was entered into the Library in Exercise 3 by selecting from the Concrete Materials Library by clicking the Copy from Library button. This concrete will be used for the beam concrete in this example.

Name	Description	Library	Unit s	f'c	f'ci	alpha	DL Density	Modulus Density	Modulus of Elasticity	Poisson's Ratio
Class A	Class A cement conc	Standard	SI/	28.00		0.00	2400.0	2320.00	25426.08	0.200
Class A (US)	Class A cement conc	Standard	US	4.000		0.00	0.150	0.145	3644.15	0.200
Class B	Class B cement conc	Standard	SL/	17.00		0.00	2400.0	2320.00	19811.84	0.200
Class B (US)	Class B cement conc	Standard	US	2.400		0.00	0.150	0.145	2822.75	0.200
Class C	Class C cement conc	Standard	SL/	28.00		0.00	2400.0	2320.00	25426.08	0.200
Class C (US)	Class C cement conc	Standard	US	4.000		0.00	0.150	0.145	3644.15	0.200
PS 6.5 ksi	PS 6.5 ksi (f'ci = 5.5	Agency	US	6.500	5.	0.00	0.150	0.150	4888.00	0.200
•										►

Select the PS 6.5 ksi material and click Ok. The selected material properties are copied to the Bridge Materials – Concrete window as shown below.

A Bridge Materials - Concrete			
<u>N</u> ame: PS 6.5 ksi	Description	r. PS 6.5 ksi (fc = 5.	5 ksi)
Compressive strength at 2	8 days (f'c) = 6.500	l ksi	
Initial compressive st	rength (f'ci) = 5.500	l ksi	
Coefficient of therma	expansion = 0.000	0060000 1/F	
Density (for	dead loads) = 0.150	l kcf	
Density (for modulus o	of elasticity) = 0.150	l kcf	
Modulus of el	asticity (Ec) = 4887	73 ksi	
I <u>n</u> itial modulus	of elasticity = 4496	.06 ksi	
Po Eo	isson's ratio = 0.200)	
Co <u>m</u> position o	of concrete = Norm	ial 💌	
Modulu	s of <u>rupture</u> = 0.610) ksi	
<u> </u>	hear factor = 1.000)	
	Copy from <u>L</u> ibrary		Apply Cancel

Click Ok to save the data to memory and close the window.

Add a concrete material for the deck, reinforcement material and prestress strand using the same techniques. The windows will look like those shown below:

Bridge Materials - Concrete	
Name: Deck Concrete	Description: Deck Concrete
Compressive strength at 28 days	(f'c) = 4.500 ksi
Initial compressive strength	(f'ci) = ksi
Coefficient of thermal expan	sion = 0.0000060000 1/F
Density (for dead lo	ads) = 0.150 kcf
Density (for modulus of elasti	icity) = 3865.200 kcf
Modulus of elasticity	(Ec) = 3644.15 ksi
Initial modulus of elast	icity = 0.00 ksi
Poisson's	ratio = 0.200
Composition of conc	rete = Normal
Modulus of rup	ture = 0.509 ksi
Shear fa	actor = 1.000
Copy fr	om Library OK Apply Cancel

A Bridge Materials - Reinforcing Steel	
Name: Grade 60 Description: 60 ksi reinforcing steel	
Material Properties	
Specified yield strength (Fy) = 60.000 ksi	
Modulus of elasticity (<u>E</u> s) = 29000.00 ksi	
<i>Ultimate strength (F<u>u</u>)</i> = 90.000 ksi	
Type © <u>P</u> lain © Epo <u>xy</u> © <u>G</u> alvanized © <u>O</u> ther	
Copy from Library OK Apply	Cancel

🗛 Bridge Materials - P5 Strand	
<u>N</u> ame: 1/2'' (7W-270) LR Deg	cription: Low relaxation 1/2"/Seven Wire/fpu = 270
Strand <u>d</u> iameter =	0.5000 in
Strand <u>a</u> rea =	0.153 in^2
Strand <u>type</u> =	Low Relaxation
<u>U</u> ltimate tensile strength (Fu) =	270.000 ksi
Yield strength (Fy) =	243.000 ksi
<u>M</u> odulus of elasticity (E) =	28500.00 ksi
Transfer l <u>e</u> ngth (Std) =	25.0000 in
Transfer length (LRFD) =	30.0000 in
Unit load per length =	0.520 lb/ft
	Epoxy coated
Copy from Libr	ary OK Apply Cancel

To enter a prestress beam shape to be used in this bridge expand the tree labeled Beam Shapes as shown below:

Click on I Beams in the tree and select File/New from the menu (or double click on I Beams in the tree). The window shown below will open.

Select the Top Flange Type as Wide and click on the copy from Library button. Select BT-72 (AASHTO-PCI Bulb-Tee BT-72) and click Ok. The beam properties are copied to the I Beam window as shown below.

To enter the appurtenances to be used within the bridge expand the tree branch labeled Appurtenances. To define a parapet double click on Parapet in the tree and input the parapet dimensions as shown below. Click Ok to save the data to memory and close the window.

The default impact factors, standard LRFD and LFD factors will be used as they were in Example 4a so we will skip to Structure Definition. Bridge Alternatives will be added after we enter the Structure Definition.

Double click on SUPERSTRUCTURE DEFINITIONS (or click on SUPERSTRUCTURE DEFINITIONS and select File/New from the menu or right mouse click on SUPERSTRUCTURE DEFINITIONS and select New from the popup menu) to create a new structure definition. The following dialog will open.

New Superstructure Definition	×
 Girder System Superstructure 	
O Girder Line Superstructure	
C Floor System Superstructure	
C Floor Line Superstructure	
C Truss System Superstructure	
C Truss Line Superstructure	
	OK Cancel

Select Girder System and the Structure Definition window will open. Enter the appropriate data as shown below:

🕰 Girder System Super	structure Definition			
Definition Analysis S	pecs Engine			
Name:	Girder system			Frame Structure Simplified Definition
Description:				Deck type: Concrete
Default Units Number of spans: Number of girders:	US Customary	Enter Span Lengths Along the Reference Line: Span Length (ft) 1 120.00		For PS only Average humidity: 70.000 %
				Member Alt. Types Steel ✓ P/S R/C Timber
			OK I	Apply Cancel

Click on Ok to save the data to memory and close the window.

The partially expanded Bridge Workspace tree is shown below:

We now go back to the Bridge Alternatives and create a new Bridge Alternative, a new Structure, and a new Structure Alternative as we did in Example 4a.

The partially expanded Bridge Workspace tree is shown below:

Click Load Case Description to define the dead load cases. The completed Load Case Description window is shown below.

Load Case Name	Description	Stage	Type Time (Day	e* s)
Parapets		Composite (long term) (Stage 2) 💌	D,DC 💌	
Future Wearing Surface		Composite (long term) (Stage 2) 🔳	D,DW 💌	
Prestressed members only	Add Default Load Case Descriptions	New Duplica	te Delete	

Double-click on Framing Plan Detail to describe the framing plan. Enter the appropriate data as shown below.

🕰 Structure Framing Plan Detai	ils				
Layout Diaphragms		Number of spans	s = 1	Number of girders	= 6
Support Skew (Degrees) 1 0.0000 2 0.0000	Girder Spacing Perpendicu	Orientation ular to girder port			
	Girder 3 Girder 3 Start of Girder 1 9.00 2 9.00 3 9.00 4 9.00 5 9.00	Spacing ft) End of Girder 9.00 9.00 9.00 9.00 9.00			
			ОК	Apply	Cancel

Switch to the Diaphragms tab to enter diaphragm spacing. Click the Diaphragm Wizard button to add diaphragms for the entire structure. Select the Framing Plan System and Click the Next button. Enter the following data on the dialog shown below.

Diaphragm Wizard	×
Diaphragm Spacing O Enter number of equal spaces per span O Enter equal spacing per span O Enter groups of equal spacing	
Support diaphragm load: kip	
Span Length Number of (ft) Equal Spaces 1 120.00	
< Back Finish Cancel Help	

Click the Finish button to add the diaphragms. The Diaphragm Wizard will create diaphragms for all of the girder bays in the structure. The diaphragms created for Girder Bay 1 are shown below:

truct	ure	Framing Plan	Details							l	
	Number of spans = 1 Number of girders = 6										
ayout	ayout Diaphragms										
Girde	Sirder Bay: 1 Copy Bay To Diaphragm Wizard										
Supp	port	Start D	istance tì	Diaphragm Spacing	Number	Length	End Dis (ff	stance t)	Load	Diaphragm	
Num	iber -	Left Girder	-> Right Girder	(ft)	of Spaces	(ft)	Left Girder	-> Right Girder	(kip)	Diapriragin	
1	-	0.00	0.00	0.00	1	0.00	0.00	0.00		Not Assigned 💌	
1	-	0.00	0.00	60.00	1	60.00	60.00	60.00		Not Assigned 💌	
1	-	120.00	120.00	0.00	1	0.00	120.00	120.00		Not Assigned 💌	
								N	ew Dur	nicate Delete	
	New Duplicate Delete OK Apply Cancel										

Select Ok to close the window.

Next define the structure typical section by double-clicking on Structure Typical Section in the Bridge Workspace tree. Input the data describing the typical section as shown below.

Basic deck geometry:

A Structure Typical Section	
Distance from left edge of deck to superstructure definition ref. line Deck thickness Left overhang	
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface Superstructure definition reference line is within Image: the bridge deck. Distance from left edge of deck to superstructure definition reference line = Start End Distance from right edge of deck to superstructure definition reference line = 25.50 ft 25.50 Distance from right edge of deck to superstructure definition reference line = 25.50 ft 25.50 ft Left overhang = 3.00 ft 3.00 ft Computed right overhang = 3.00 ft 3.00 ft	
OKApplyCance	

The Deck (cont'd) tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described above.

Structure Typical Section	
Distance from left edge of deck to superstructure definition ref. line Deck thickness Left overhang	ang
Deck Deck Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface	
Deck concrete: Deck Concrete	
Total deck thickness: 8.0000 in	
Deck <u>c</u> rack control parameter: 130.000 kip/in	
Sustained modular ratio factor:	
Deck exposure factor:	
OK Apply	Cancel

Parapets:

Add two parapets as shown below.

Structure Typical Se	ection						<u>- 🗆 ×</u>
Deck Deck (Cont'd)	Parapet	Back	Generic Sidev	iront valk i Lane Pr	sition Weari	ing Surface)	
Name	Load Case	Measure To	Edge of Deck Dist. Measured From	Distance At Start (ft)	Distance At End (ft)	Front Face Orientation	
300 PLF parapet	🕶 parapets 🔄	Back 💌	Left Edge 💌	0.00	0.00	Right 💌	
300 PLF parapet	🛨 parapets 💽	Back 🗾	Right Edge 💌	0.00	0.00	Left 🗾	
				New	Duplicate	Delet	e
				0K	Apply	Ca	incel

Lane Positions:

Select the Lane Position tab and use the Compute... button to compute the lane positions. A dialog showing the results of the computation opens. Click Apply to apply the computed values. The Lane Position tab is populated as shown below.

Wearing Surface:

Enter the data shown below.

Structure Typical Section	
Distance from left edge of deck to superstructure definition ref. line Deck thickness T	
Left overhang	
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface	
Wearing surface material: Bituminous	
Description:	
Wearing surface thickness = 2.0000 in Thickness field measured (DW = 1.25 if checked)	
Wearing surface density = 150.000 pcf	
Load case: Future Wearing Surface Copy from Library	
	ancel

Click Ok to save the data to memory and close the window.

Now define a Stress Limit. A Stress Limit defines the allowable concrete stresses for a given concrete material. Double click on the Stress Limits tree item to open the window. Select the "PS 6.5 ksi" concrete material. Default values for the allowable stresses will be computed based on this concrete and the AASHTO Specifications. A default value for the final allowable slab compression is not computed since the deck concrete is typically different from the concrete used in the beam. Click Ok to save this information to memory and close the window.

🗛 Stress Limit Sets - Concrete					_ 🗆 ×		
<u>Name:</u> 6.5 ksi Concrete Stress Limit Description: Stress limit for 6.5 ksi concrete used in beam							
Concrete Material: PS 6.5 ksi		•					
	LFD		LRFD				
Initial allowable compression:	3.300	ksi	3.300	ksi			
Initial allowable tension:	0.200	ksi	0.200	ksi			
Final allowable compression:	3.900	ksi	3.900	ksi			
Final allowable tension:	0.484	ksi	0.484	ksi			
Final allowable DL compression:	2.600	ksi	2.925	ksi			
Final allowable slab compression:	2.700	ksi	2.700	ksi			
Final allowable compression: (LL + 1/2(Pe + DL))	2.600	ksi	2.600	ksi			
			ОК		Cancel		

Double click on the Prestress Properties tree item to open a window in which to define the prestress properties for this structure definition. Define the Prestress Property as shown below. We are using the AASHTO Approximate method to compute losses so the "General P/S Data" tab is the only tab that we have to visit. Click Ok to save to memory and close the window.

A Prestress Properties	
Name: 1/2" LR AASHTO Loss	
General P/S Data Loss Data - Lump Sum Loss Data - PCI	
P/S strand material: 1/2" (7W-270) LR Jacking stress ratio: 0.750	
Transfer time: 24.0 Hou	rs
Age at deck placement: 30.00 Day	s
Percentage DL: 0.0 %	\$
Include elastic gains	
	Cancel

Now define the vertical shear reinforcement by double clicking on Vertical (under Shear Reinforcement Definitions in the tree). Define the reinforcement as shown below. Click Ok to save to memory and close the window.

A Shear Reinforcement Definition - Vertical	_ 🗆 ×
Name: #4 Shear Reinf.	
Material: Grade 60	
Bar size: 4	
Number of legs: 2.00	
Inclination (alpha): 90.0 Degrees	
Vertical Shear Reinforcement	
	Cancel

A partially expanded Bridge Workspace is shown below.

Describing a member:

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this Member.

A Member							
<u>M</u> ember name:	G1		Link with:	None	•		
Description:							
					v		
	Existing Current	Member Alternative Name	D	escription			
Number of spans:	1 🖂				<u>P</u> edestriar	n load:	lb/ft
		Span Span No. Length					
		1 120.00					
				(0	K	Apply	Cancel

Defining a Member Alternative:

Double-click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select Prestressed (Pretensioned) Concrete for the Material Type and PS Precast I for the Girder Type.

×
Girder Type:
PS Precast I
Concrete
OK Cancel

Click Ok to close the dialog and create a new member alternative.

The Member Alternative Description window will open. Enter the appropriate data as shown below. The Schedule-based Girder property input method is the only input method available for a prestressed concrete beam.

A Member Alternative Description	<u>_ ×</u>
Member Alternative: Precast I Beam Alternative	
Description Specs Factors Engine Import Control Options	
Description: Material Type: Prestressed (Preter Girder Type: Prestressed (Preter	nsioned
Default Units: US Customary	1
Girder property input method Schedule based Cross-section based	
Default rating method:	
Additional Self Load	
Additional self load = kip/ft Additional self load = %	
Crack control parameter (Z)	
Top of beam: kip/in	
Top of beam:	
Bottom of beam:	
OK Apply	Cancel

Next describe the beam by double clicking on Beam Details in the tree. The Beam Details windows with the appropriate data are shown below.

eam Det	ails							_ 🗆
pan Deta	il Stress Limi	it Ranges Slab Interfa	ice Web End Block					
Span Number	Beam Shape	Girder Material	Prestress Properties	Use Creep	n	Beam Pr Left End (in)	ojection Right End (in)	
1	BT-72 💌	PS 6.5 ksi	📕 1/2" LR AASHTO Los 💌	No 💌		6.0000	6.0000	1
				[C	ІК Ар	ply Car	ncel

If we try to use the Compute from Typical Section button on the Live Load Distribution – Standard tab to populate the LFD live load distribution factors for this member alternative, we will receive a message that Virtis/Opis cannot calculate the distribution factors because beam shapes are not assigned to adjacent member alternatives. This is due to the fact that Virtis/Opis does not yet know if we have adjacent box beams or spread box beams.

Virtis/Opis uses the beam shape assigned to this member alternative and also the beam shapes assigned to the adjacent member alternatives to determine if we have adjacent or spread box beams. Since we do not have any member alternatives for the adjacent members defined yet in this training example, we will enter the following distribution factors by hand.

During actual production use of Virtis/Opis you can revisit this window after member alternatives have been created for all members in your superstructure. Then the Compute button will correctly determine if you have adjacent or spread box beams and compute the distribution factors for you.

Live Load Di	istribution						
Standard LF	RFD n Factor Input Metho e Simplified Method	O Use Adv	anced Method				
Lanes		Distribution (Whee	Factor Is)				
Loaded	Shear	Shear at Supports	Moment	Deflection			
1 Lane	1.222	1.222	1.222	0.333			
Multi-Lane	1.222	1.222	1.222	1.000			
Compute fr Typical Sec	om ction	5					
				01	< 4	Apply	Cancel

Go back to the Beam Details Window and complete the remaining information. Note that Stress Limit Ranges are defined over the entire length of the precast beam, including the projections of the beam past the centerline of bearing which were entered on the Span Detail tab.

eam Det	ails				
òpan Detai	Stress Limit Rang	ges Slab Interfac	ce Web End Bl	ock	
Span Number	Name	Start Distance (ft)	Length (ft)	End Distance (ft)	
1 💌	6.5 ksi Concrete 💌	0.00	121.00	121.00	
					New Duplicate Delete
					OK Apply Cancel

Enter value in Slab Interface tab as shown below.

🗛 Beam Details	
Span Detail Stress Limit Ranges Slab Interface Web End Block	
Interface type: Intentionally Roughened	
Default interface width to beam widths 🔽	
Interface width:	
Cohesion factor: 0.100 ksi	
Friction factor: 1.000	
K1: 0.300	
K2: 1.800 ksi	
ОК Аррі,	Cancel

Click Ok to save the Beam Details data to memory and close the window.

Expand the tree under Strand Layout and open the Span 1 window. Place the cursor in the schematic view on the right side of the screen. The toolbar buttons in this window will become active. Select the Zoom button to shrink the schematic of the beam shape so that the entire beam is visible. Select the Description Type as Strands in rows and the Strand Configuration Type as Harped. The Mid span radio button will now become active. You can now define the strands that are present at the middle of the span by selecting strands in the right hand schematic. Select the bottom 44 strands in the schematic so that the CG of the strands is 5.82 inches.

🕰 Strand Layout - Span 1		
] 🖻 🖹 🕄 🤤 🕂 🖶 🔂 🖂 📘 🚺 🔽 🔽		
□ Description Type ○ P and CGS only ○ Strands in rows ○ Straight/Debonded ○ Straight/Debonded ○ Harped and straight debonded ○ Mid span □ Left end Harp Point Locations ○ Right end □ Distance Radius (in) □ Right end □ O 0 00000	<image/>	
Appy Cancer	 The harped peakles of a harped arcsea. The near-space peakles of a harped arcsea. The near-space peakles of centering and the harped peakles of an other arcsea. 	•

Now select the Left end radio button to enter the following harped strand locations at the left end of the precast beam. Place the cursor in the schematic view on the right side of the screen. You can now define the strands that are present at the left end of the span by selecting strands in the right hand schematic. Select the top 10 strands in the schematic so that the CG of the strands is 18.09 inches. Close the window by clicking Ok. This saves the data to memory and closes the window.

Strand Layout - Span 1	
Image: Strand Layout - Span 1 Image: Strand Configuration Type O P and CGS only Strand Configuration Type Image: Straight/Debonded Image: Harped Image: Harped and straight debonded Image: Mid span Harp Point Locations Image: Harp Point Distance Radius (ft) Image: Harp Point Left Image: Harp Point Left	
OK Apply Cancel	Anneber of argree argree + 16 Choirs of argree argree + 16 Choirs of argree argree + 16 Choirs are reasoned from booker of accider + 16.200 Legen: Monitors at the peaking and the convertexcidencies location Monitors at the peaking at the convertexcidencies location Monitors at the above and bookers of the convertexcidencies location The argres is addrese at the convertexcidencies location The argres peaking of largee at argres. The argres peaking of largee at and both argres peaking of a peaking at a large at a large both argres location at a large at a large at a large both argres location at a large at a large at a large both argres location at a large at

Next open the Deck Profile and enter the data describing the structural properties of the deck. The window is shown below.

\land D	eck Profile										_	
Тур	be: PS Precast I		_									
Ď	Deck Concrete Reinforcement											
	Material	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	Structural Thickness (in)	Start Effective Flange Width (Std)	End Effective Flange Width (Std)	Start Effective Flange Width (LRFD)	End Effective Flange Width (LRFD)	n	-
	Deck Concrete 💌	1 🔽	0.00	120.00	120.00	7.5000	(in) 90.0000	(in) 90.0000	(in) 108.0000	(in) 108.0000		
	<u>C</u> ompute from Typical Section							New	Duplicate	De	lete	┙╽
								OK	Ар	ply	Canc	el

No reinforcement is described.

The haunch profile is defined by double clicking on Haunch Profile in the tree. The window is shown below.

<u> </u>	PS Hau	nch Profile											<u>_ ×</u>
			7			IY3	Y	31	2 <u>1</u> 	 Z4]		
	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	Z1 (in)	Z2 (in)	Z3 (in)	Z4 (in)	Y1 (in)	Y2 (in)	Y3 (in)		
	1 💌	0.00	120.0	120.00	0.0000	0.0000	0.0000	0.0000	0.5000	0.5000	0.0000		
										Nev	/	Duplicate	Delete
									[(OK		Apply	Cancel

The Shear Reinforcement Ranges are entered as described below. The vertical shear reinforcement is defined as extending into the deck on this tab. This indicates composite action between the beam and the deck. Data does not have to be entered on the Horizontal tab to indicate composite action since we have defined that by extending the vertical bars into deck.

PS Shear Reir	nforceme	ent Ranges					
Vertical Horiz Span: 1	ontal	Start Distance	<mark> </mark>	pacing			
Name	Extends into Deck	Start Distance (ft)	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)	
#4 Shear 💌	<u> </u>	0.50	1	0.0000	0.00	0.50	
		Stimus Desig	o View				
Stirrup Wiz	ard	Tool		3		New	Duplicate Delete
						OK	Apply Cancel

The description of an exterior beam for this structure definition is complete.

To compute LRFD live load distribution factors the interior girder adjacent to exterior girder must be defined. Copy Precast I Beam Alternative of G1 and paste to G2 as a member alternative. Open Live Load Distribution window, LRFD tab, use Compute from Typical Section button to compute LRFD live load distribution factors.

The member alternative can now be analyzed. To perform LRFR rating, select the View Analysis Settings button on the toolbar to open the window shown below. Click Open Template button and select the LRFR Design Load Rating to be used in the rating and click Ok.

🕰 Analysis Settings		
C Design Review Rating	Rating Method: LRFR	•
Analysis Type: Line Girder		
Lane/Impact Loading Type: As Requested	Apply Preference Setting: None	
Vehicles Dutput Engine Description Traffic Direc Both direction Vehicle Selection:	ion: Ins Vehicle Su Add to Rating Remove from Analysis <<	Temporary Vehicles Advanced ummary: Imporary Vehicles ing Vehicles Imporary Vehicles RFR Design Load Rating Imporary Vehicles Imporary Vehicles RFR Design Load Rating Imporary Imporary Vehicles Imporary Vehicles Imporary Vehicles RFR Design Load Rating Imporary Vehicles Imporary Vehicles Imporary Vehicles Imporary Vehicles Imporary Vehicles Imporary Vehicles RFR Design Load Rating Import Import Import Import Import Import Import Import Import Import Import Import Import Import Impo
Reset Clear Open Template	Save Template	OK Apply Cancel

Next click the Analyze button on the toolbar to perform the rating. When the rating is finished you can review the results by clicking the View analysis Report on the toolbar. The window shown below will open.

4	Analysis I	Results - Preca	ist I Beam Alt	ernative										_	
	Report Type Rating Rest	ults Summary	▼ Car	e/Impact Loa As Requested	ding Type — I ODetai	led Displa	y Format ole rating leve	ls per row		•					
	Live Load	Live Load Type	Rating Method	Inventory Load Rating (Ton)	Operating Load Rating (Ton)	Legal Load Rating (Ton)	Permit Load Rating (Ton)	Inventory Rating Factor	Operating Rating Factor	Legal Rating Factor	Permit Rating Factor	Inventory Location (ft)	Inventory Location Span-(%)	Operating Location (ft)	Ope Loc Spai
l	HL-93 (US)	Truck + Lane	LRFR	41.25	62.92			1.146	1.748			60.00	1 - (50.0)	60.00	1 - (
		•	Å	Å				Å	A	A	Å	δ			
	AASHTO LR	FR Engine Versio	on 6.4.0.2003												_
	Analysis Pref	erence Setting: N	lone												
														Close	;

An LRFD design review of this girder for HL93 loading can be performed by AASHTO LRFD. To do LRFD design review, enter the Analysis Settings window as shown below:

Analysis Settings			
Design Review O Rating	Design Method:	LRFD	•
Analysis Type: Line Girder Lane/Impact Loading Type: As Requested	Apply Preference Setting: [None	-
Vehicles Output Engine Description Traffic Direct Both direction Vehicle Selection: Vehicles Standard Alternate Military Loading Uehicles	ion: Ins Vehi Add to Design	Refresh Temporary Vehicles icle Summary: Design Vehicles Design Loads HL-93 (US)	Advanced
HL-93 (SI) HL-93 (US) 	Remove from Analysis <<	⊡- Fatigue Loads ⊡- Fatigue Loads LRFD Fatigue Truck (US)	
Reset Clear Open Template	Save Template	ОК Аррју	Cancel

AASHTO LRFD analysis will generate a spec check results file. Click of on tool bar to open the following window.

A PS1 Training Bridge	
 PS1 Training Bridge Girder system G1 Precast I Beam Alternative AASHTO_LRFD Summary of computed distribution factors Detailed calculations of computed distribution factors Spec Check Results (Tuesday Jul 24, 2012 18:26:53) Log File AASHTO_LRFR Summary of computed distribution factors Detailed calculations of computed distribution factors Log File AASHTO_LRFR Summary of computed distribution factors Detailed calculations of computed distribution factors Log File Log File Log File Log File 	
) · · ·	

To view the spec check results, double click the Spec Check Results in this window.

C:\Documents and Settings\XLi\My Documents\AASHTOWARE\	VirtisDpis64\P51TrainingBridge\Girdersyst - Windows Internet Explorer		_ 8 ×
C:\Documents and Settings\XLI(My Documents\AASHTOW	/ARE\VirtisOpis64\P51TrainingBridge\Girdersystem\G1\PrecastIBeamAlternative\AASHTO_LRFD\Stage 3 Spec Check Results.XML	💽 🐓 🗙 🎦 Google	₽ •
File Edit View Favorites Tools Help			
🔓 Favorites 🛛 🙀 🙋 Free Hotmail 🙋 Web Slice Gallery 🔹			
		🚹 🔻 🖾 🛩 🖃 🛻 👻 Page 👻 Safi	ety + Tools + 🔞 + 🛸
Superstructure Def : Girder system			^
Member : G1	Member Alt : Precast I Beam Alternative		
Analysis Preference Setting : None			

AASHTO LRFD Specification, Edition 5, Interim 2010

Specification Check Summary

Article	Status
Initial Stress at Transfer (5.9.4.1.1, 5.9.4.1.2)	Pass
Final Stress due to Permanent and Transient Loads (5.9.4.2.1, 5.9.4.2.2)	Pass
Flexure (5.7.3.2, 5.7.3.3.2)	Pass
Shear (5.8.3.3, 5.8.2.5, 5.8.2.7, 5.8.3.5)	Pass
Deflection (5.7.3.6.2)	Pass

Initial Compression Stress At Transfer of Prestress

Location (ft)	Allowable Stress (ksi)	Actual Stress Top of Beam (ksi)	Actual Stress Bot of Beam (ksi)	Ratio	Code
0.000	-3.30	-0.02	-0.64	5.20	Pass
2.000	-3.30	-0.15	-3.14	1.05	Pass
6.311	-3.30	-0.20	-3.09	1.07	Pass
12.000	-3.30	-0.28	-3.01	1.10	Pass
24.000	-3.30	-0.34	-2.94	1.12	Pass
36.000	-3.30	-0.32	-2.96	1.11	Pass
48.000	-3.30	-0.21	-3.08	1.07	Pass
60.000	-3.30	-0.26	-3.03	1.09	Pass
72.000	-3.30	-0.21	-3.08	1.07	Pass
84.000	-3.30	-0.32	-2.96	1.11	Pass
96.000	-3.30	-0.34	-2.94	1.12	Pass
108.000	-3.30	-0.28	-3.01	1.10	Pass
113.689	-3.30	-0.20	-3.09	1.07	Pass
118.000	-3.30	-0.15	-3.14	1.05	Pass
120.000	-3.30	-0.02	-0.64	5.20	Pass

Initial Tension Stress At Transfer of Prestress

Location (ft)	Allowable Stress (ksi)	Actual Stress Top of Beam (ksi)	Actual Stress Bot of Beam (ksi)	Ratio	Code		
ne	1	·			·	My Computer	