AASHTOWare Bridge Design & Rating (BrDR) For Research

A Whitepaper based on the NCHRP 15-54 Research – M. Mlynarski

AASHTOWare RADBUG Meeting July 30-31, 2019 South Lake Tahoe, CA

Using AASHTOWare BrDR For Research
Brief History/Background
Methods for using the software
Conclusions

2

ichael Baker We Make a Difference

Using AASHTOWare BrDR For Research
 Brief History/Background
 NCHRP 12-50 – Bridge Software Validation and Guidelines

Michael Baker

4 **Using AASHTOWare BrDR For Research** Brief History/Background NCHRP 12-50 – Bridge Software Validation and Guidelines Began right after LRFD Spec Implementation Compared two software packages (PennDOT-**BRASS**) Developed 12-50 Process (origin of BrDR RTU)

Using AASHTOWare BrDR For Research
 Brief History/Background
 NCHRP 15-28 – CANDE Modernization

5

Michael Baker

Using AASHTOWare BrDR For Research Brief History/Background ► NCHRP 15-28 – CANDE Modernization CANDE models soil elements with the culvert structure In use since the 1980's ► Use of CANDE and modifying for 15-54 was key but won't be discussed for this presentation

 Using AASHTOWare BrDR For Research
 Brief History/Background
 NCHRP 12-78 – A comparison of AASHTO Load Rating Methods

8 Using AASHTOWare BrDR For Research Brief History/Background NCHRP 12-78 – A comparison of AASHTO Load Rating Methods Intensive use of BrR Collected 18,000+ BrR bridges from the states Created a 1500 bridge – cross section of the NBI 1500 bridge set still used today for regression testing Currently being used for FHWA Truck Platooning study

Using AASHTOWare BrDR For Research Brief History/Background NCHRP 15-54 – Proposed Modifications to AASHTO Culvert Load Rating Specifications Culvert project Field testing-instrumenting/modeling of culverts Propose specifications Use BrDR to help validate proposed specifications

NCHRP 15-54

Proposed Modifications to AASHTO Culvert Load Rating Specifications

Research Team

MARK MLYNARSKI, P.E. – MICHAEL BAKER INTERNATIONAL CHAD CLANCY, P.E. – MODJESKI AND MASTERS TIM MCGRATH, PH.D, P.E. – TJMCGRATH, LLC

MIKE KATONA, PH.D.

Panel TIM ARMBRECHT, CHAIR, ILLINOIS DOT **REGINALD ARNO, DISTRICT DOT** THOMAS KOCH, NORTH CAROLINA DOT <u>YI QIU, TEXAS DOT</u> HOLLY THOMAS **BRAD WAGNER, MICHIGAN DOT** JAMES WITHIAM WASEEM DEKELBAB, NCHRP LUBIN GAO, FHWA

Phases I-III

- Field Testing Led by Modjeski & Masters
- Develop Test Plan
- Schedule a date
- Instrument
- Load with a known vehicle weight

Michael Baker NTERNATIONAL

Phases I-III

- Refine 3D models
- Refine 2D models
- Propose Specs
- Program specs to view effects of change (BrDR) Regression data From BrR
 - i.e. How do the rating factors change based on the spec change?
 - CALTRANS BrR models

Using AASHTOWare BrDR For Research Methods for using the software

How was BrR used?

13

Michael Baker

Using AASHTOWare BrDR For Research Methods for using the software ► Using the software 'As-Is' Using the regression Data Modifying the software Using a large number of examples already input

14

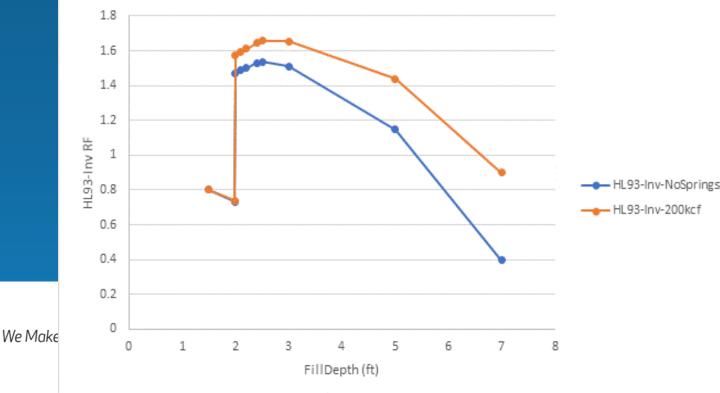
Using AASHTOWare BrDR For Research Methods for using the software ► Using the software 'As-Is' – Spring Constants Ran culverts without spring constants Ran culverts with proposed spring constants Compare the ratings at varying field depths

15

Using AASHTOWare BrDR For Research Methods for using the software

Using the software 'As-Is' – Spring Constants

Fill Depth (ff)	Vehicle	HL93-Inv- NoSprings	HL93-Inv- 100 kcf Springs	Iny- Ratio*
Model 1				
1.5	HL-93 (US)	0.8	0.802	0.998
1.99	HL-93 (US)	0.733	0.739	0.992
2	HL-93 (US)	1.47	1.541	0.954
2.1	HL-93 (US)	1.486	1.56	0.953
2.5	HL-93 (US)	1.538	1.621	0.949
3	HL-93 (US)	1.509	1.61	0.937
5	HL-93 (US)	1.147	1.376	0.834
7	HL-93 (US)	0.395	0.816	0.484


Less than 1.0 ratio indicates the new rating is greater than the old. As the fill gets deeper, the rating improves

Using AASHTOWare BrDR For Research
Methods for using the software
Using the software 'As-Is' – Spring Constants

Michael Bakeı

INTERNATIONAL

MBE – BrDR Bedding Stiffness ¹⁸

Requires modulus of subgrade reaction (pci)

Engineering judgement needed

Values from literature included, for example:

Soil	Range ² (pci)	Rating Values ³ (pci)
Loose sand	15-60	30
Medium dense sand	35-290	115
Dense sand	230-460	290
Clayey medium dense sand	115-290	200

Michael Bake

INTERNATIONAL

Using AASHTOWare BrDR For Research Methods for using the software Using the regression Data Common use – with RTU utility Using it for other purposes Little Data mining utility written using the BrDR regression data

19

Using AASHTOWare BrDR For Research

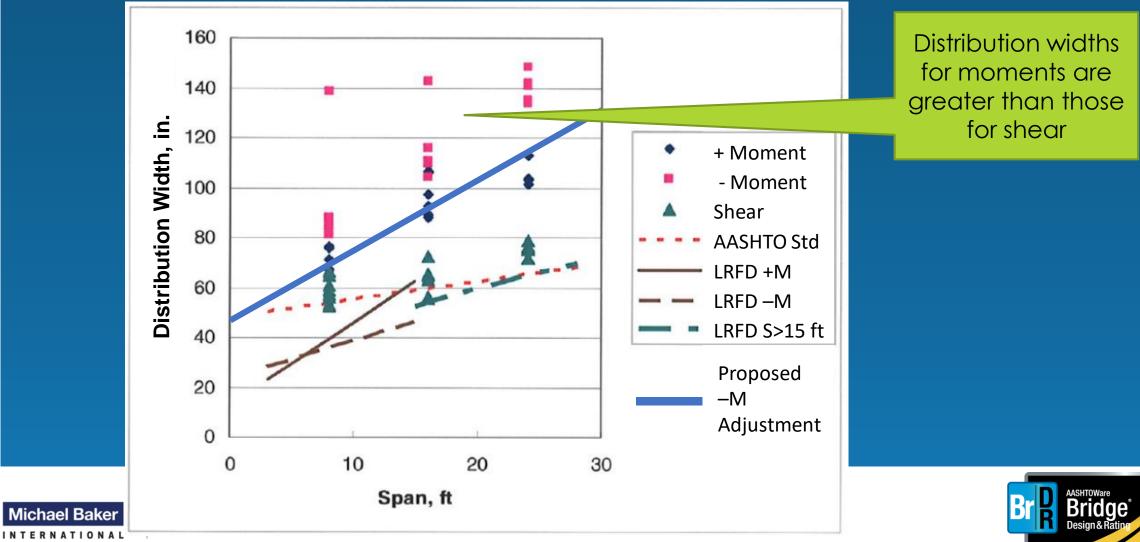
Methods for using the software

Critical Report #

RTU Data Mining: Find critical report and corresponding values	- 🗆 X
Select Max/Min Report ID O Maximum Report List 63005, 91001, 63805, 63905, 64005 Image: Minimum 63006, 91001, 63806, 63906, 64006 63006, 91001, 63806, 63906, 64006	Add Get Each Element Clear Find
	Report ID list The first report ID is the key ReportID - Get the minimum/maximum value for this report ID The subsequent numbers are reports at the same location as the key Report ID. For this example, this will mine for
Bridges Model 1-M1C (REV) ~ Element ~	63005 - Minimum Moment Rating Factor 91001 - Area at the location of 63005
Critical Report ID	63805 - Moment DL (Inv) 63905 - Moment LL (Inv) 64005 - Moment Capacity (inv)
Plot Create Word File Plot Options • • Plot Corresponding Values • • Plot critical values • • Plot All RF • • Only plot multiple super defs	63006 - Minimum Shear Rating Factor 91001 - Area at the location of 63005 63806 - Moment DL (Inv) 63905 - Moment LL (Inv)

Using AASHTOWare BrDR For Research

Using AASHTOWare BrDR For Research Methods for using the software Other possible uses of regression data Comparing PS shear control options (App B, General...) Changes in RF from one spec to another Producing Graphs/Tables



22

Using AASHTOWare BrDR For Research
Methods for using the software
Modifying the Software
Shear capacity changes
Changes to Live Load Surcharge

MBE – R/C Box Culvert Shear ²⁴

AASHO

Note: LRFD refers to AASHTO LRFD Bridge Design Specifications, 2nd Edition

MBE – R/C Box Culvert Shear ²⁵

Implementation:

$$\varepsilon_{s} = \frac{\left(\left| \frac{M_{u} - mod}{d_{v}} \right| + 0.5 N_{u} + |V_{u}| \right.}{E_{s} A_{s}} \qquad 5.7.3.4.2 - E_{s} A_{s} = \frac{\left(\left| \frac{M_{u} - mod}{d_{v}} \right| + 0.5 N_{u} + |V_{u}| \right.}{E_{s} A_{s}} = \frac{\left(\left| \frac{M_{u} - mod}{d_{v}} \right| + 0.5 N_{u} + |V_{u}| \right.}{E_{s} A_{s}} = \frac{\left(\left| \frac{M_{u} - mod}{d_{v}} \right| + 0.5 N_{u} + |V_{u}| \right|}{E_{s} A_{s}} = \frac{1}{E_{s} A_{$$

$$M_{u-mod} = M_u \frac{96 + 1.44 * Span}{96 + 5.47 * Span}$$

We Make a Difference

Michael Baker

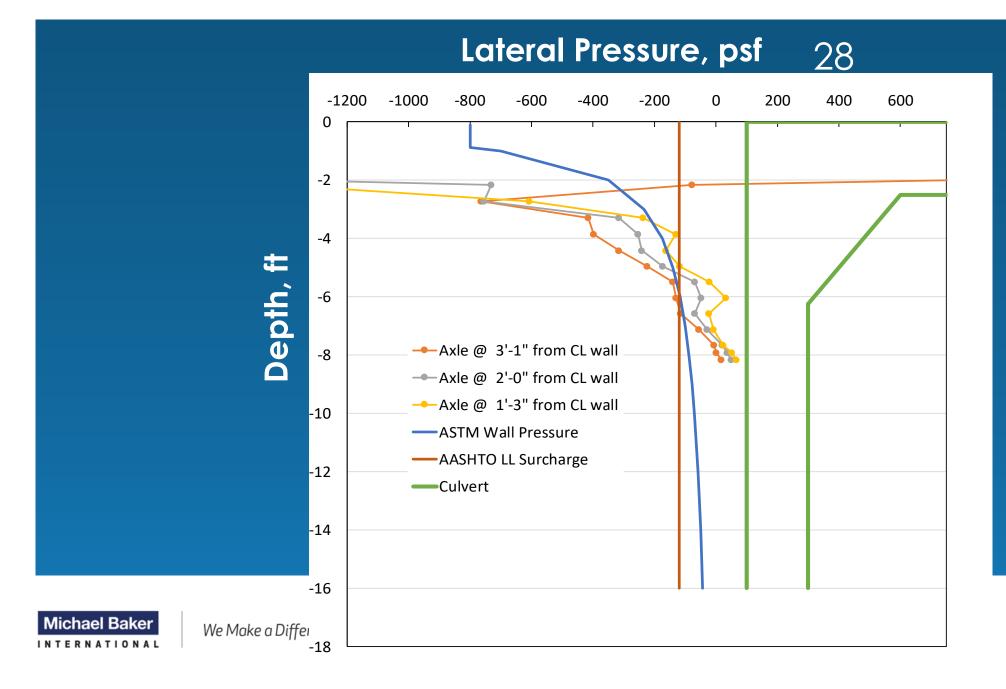
INTERNATIONAL

Bridge ID	Fill Depth	Critical Element (Before)	Location (Before)	Critical Element (After)	Location (After)	Shear Inv Rating Factor HL93 (Before)	Shear Inv Rating Factor HL93 (After)	Ratio (before/ after)	
CD10x8;10 2002-Rev	1.5	Top Slab 2	0.6025	Top Slab 2	0.6025	1.1099	1.1789	0.9415	
CD10x8;10 2002-Rev	1.9	Top Slab 2	0.6025	Top Slab 2	0.6025	1.1066	1.1835	0.9350	
CD10x8;10 2010-Rev	1.5	Top Slab 2	0.6925	Top Slab 2	0.6925	1.4619	1.557	0.9389	
CD10x8;10 2010-Rev	1.9	Top Slab 2	0.6925	Top Slab 2	0.6925	1.5025	1.5806	0.9506	
CD10x8;16 1966-Rev	1.9	Top Slab 1	9.0893	Top Slab 1	9.0893	1.601	1.8908	0.8467	
CD10x8;2 1966-Rev	0.5	Top Slab 1	9.3866	Top Slab 1	0.6354	1.0071	1.0407	0.9677	
CD10x8;2 1966-Rev	1	Top Slab 1	9.3866	Top Slab 1	0.6354	1.0185	1.1017	0.9245	
CD10x8;2 1966-Rev	1.5	Top Slab 1	9.3866	Top Slab 1	9.3866	1.0306	1.0946	0.9415	
CD10x8;2 1966-Rev	1.9	Top Slab 1	9.3866	Top Slab 1	9.3866	1.0314	1.0873	0.9486	
CD10x8;3 1952-Rev	1.5	Top Slab 1	8.8819	Top Slab 1	8	1.0699	1.3251	0.8074	
CD10x8;3 1952-Rev	1.9	Top Slab 1	8.8819	Top Slab 1	8.8819	1.0888	1.3459	0.8090	
CD10x8;5 1948-Rev	1	Top Slab 1	8.9271	Top Slab 1	1.1034	1.1191	1.2936	0.8651	
CD10x8;5 1948-Rev	1.5	Top Slab 1	8.9271	Top Slab 1	8.9271	1.1443	1.3417	0.8529	
CD10x8;5 1948-Rev	1.9	Top Slab 1	8.9271	Top Slab 1	8.9271	1.1661	1.3478	0.8652	

LRFD - Lateral Live Load -Recommendation

Adopt ASTM approaching wheel load (new Article 3.11.6.4.2)

 $\Delta_p(h_d) = 700/h_d \le 800 \text{ psf}$


27

Apply to full depth of culverts with less than 2 ft of cover

Regression Test with current spec (applied evenly along the wall)

ael Baker We Mak

LRFD - Lateral Live Load – BrR Regression Test

			Inv Rating	Inv Rating	
	Culvert	Cover	HL93 (Before)	HL93 (Before)	Inventory Ratio
	LS-CD8x8;10 1924-Rev	5 ft Cover	0.919	1.453	0.632485
	LS-CD8x8;10 1933-Rev	3.5 ft Cover	1.625	1.739	0.934445
	LS-CD8x8;10 1933-Rev	4 ft Cover	1.496	2.119	0.705993
	LS-CD10x8;16 1966-Rev	1.9 ft Cover	0.723	0.736	0.982337
	LS-CD10x8;16 1966-Rev	2 ft Cover	0.692	0.753	0.918991
	LS-CD10x8;16 1966-Rev	2.5 ft Cover	0.549	0.652	0.842025
	LS-CD10x8;16 1966-Rev	3 ft Cover	0.401	0.51	0.786275
	LS-CD10x8;16 1966-Rev	3.5 ft Cover	0.249	0.337	0.738872
	LS-CD10x8;16 1966-Rev	4 ft Cover	0.093	0.134	0.69403
	LS-CS10x8;5 1933-Rev	1.5 ft Cover	0.566	0.569	0.994728
	LS-CS10x8;5 1933-Rev	1.9 ft Cover	0.456	0.494	0.923077
	LS-CS10x8;5 1933-Rev	2 ft Cover	0.429	0.473	0.906977
	LS-CS10x8;5 1933-Rev	2.5 ft Cover	0.293	0.35	0.837143
	LS-CS10x8;5 1933-Rev	3 ft Cover	0.157	0.203	0.773399
	LS-CS10x8;5 1933-Rev	3.5 ft Cover	0.023	0.032	0.71875
We Make a Differend	LS-CS10x8;10 1933-Rev	7 ft Cover	1.525	1.758	0.867463
	LS-CD12x8;9 1948-Rev	1.9 ft Cover	0.427	0.448	0.953125
	LS_CD12v8:0 10/8-Rev	2 ft Cover	0 300	0.425	0.000004

Michael Baker

INTERNATIONAL

Using AASHTOWare BrDR For Research Methods for using the software Using existing BrR data sets from the states ▶2008 – collected 18,000 BrR bridges from the states ▶2019 – More than 80,000 BrR bridges have been input Take advantage of this growing, untapped inventory

30

Using AASHTOWare BrDR For Research Conclusions Thanks to AASHTOWare! Continue AASHTO's participation in research ► Use BrR for parametric/regression studies Review the effects of proposed changes before approval stage of specs

31