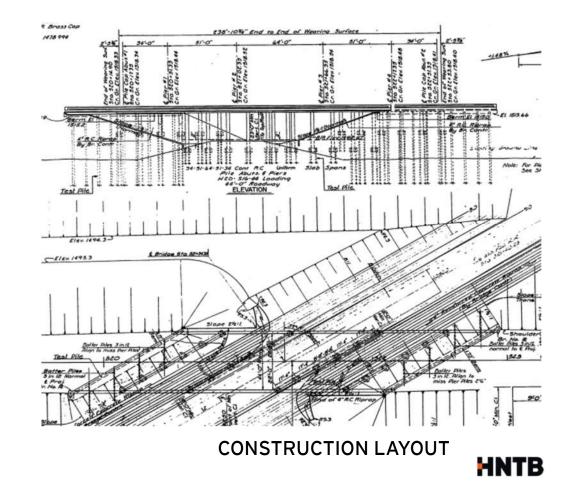
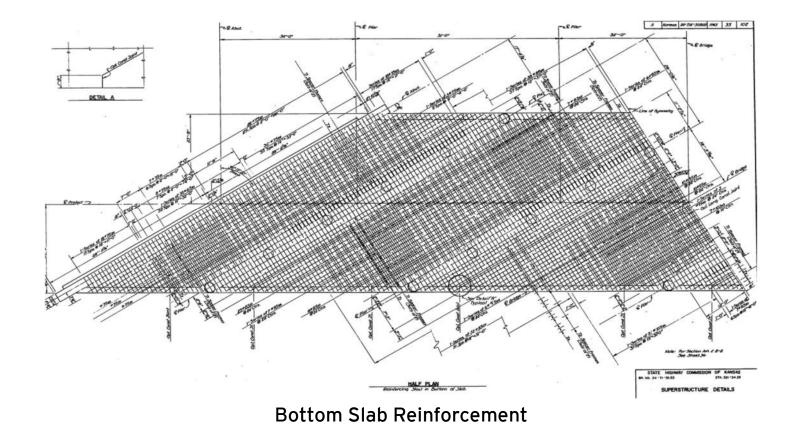
Load Rating Atypical Concrete Bridges with BrR

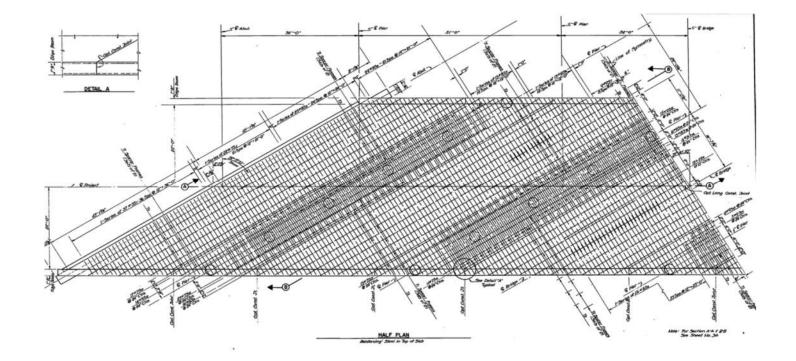
2018 RADBUG Meeting

HNTB

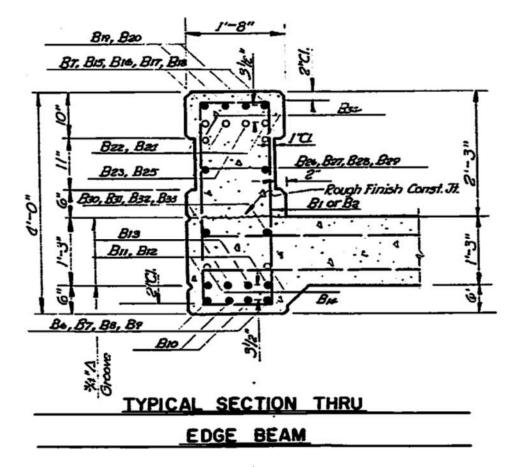
Mike Briggs, PE, SE Allie Wagner, PE HNTB Corporation - Kansas City, MO

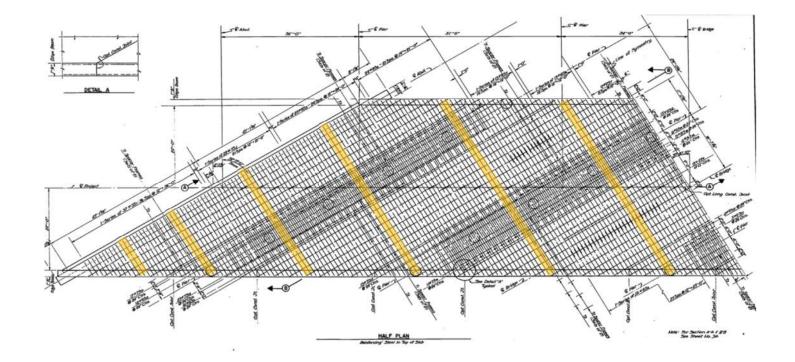

Overview

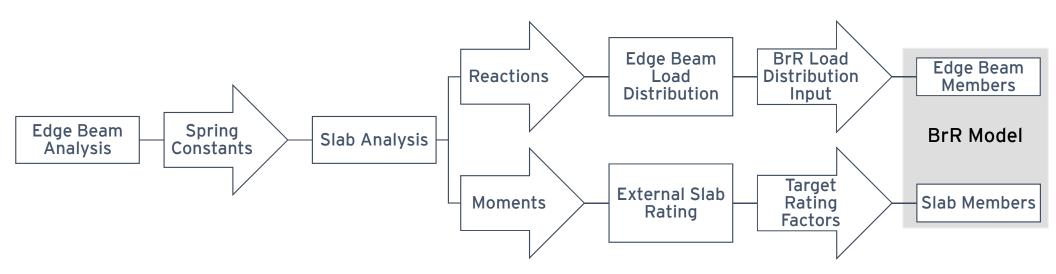

- Complex Slab Systems using Simplified Line Analyses
 - Edge-Supported Skewed Slab
 - Illinois Bulletin Slab (IBS) Bridges
- Unsupported Structures using "Static Rating Factor" Models
 - Filled-Spandrel Arches
- Conclusions

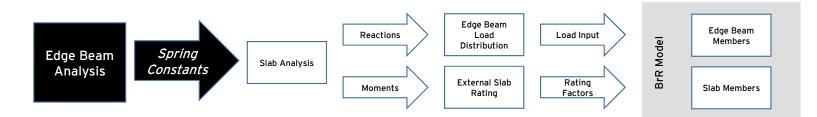


General Description:

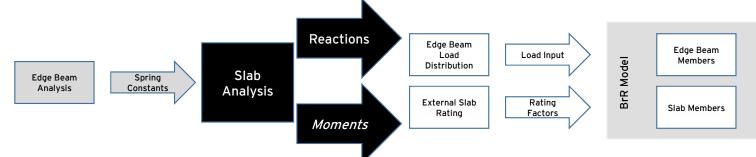

- 5-Span Slab
 - 34'-51'-64'-51'-34'
- 59°19'10" Skew
- 44' Roadway Width

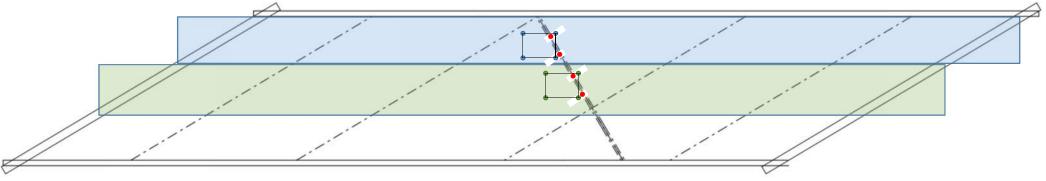


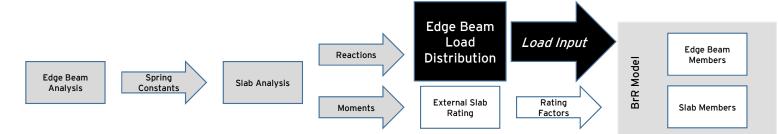

Top Slab Reinforcement



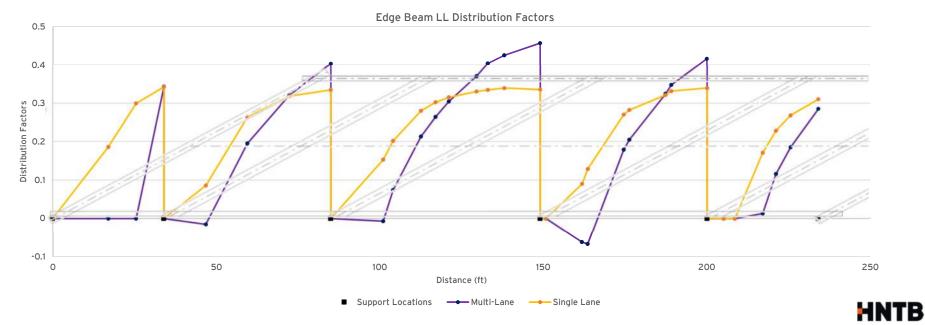
Top Slab Reinforcement

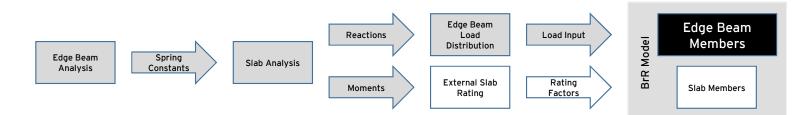

Rating Procedure:




- Simple Line Model
- Rectangular Cross Section
- Pin/Roller Supports

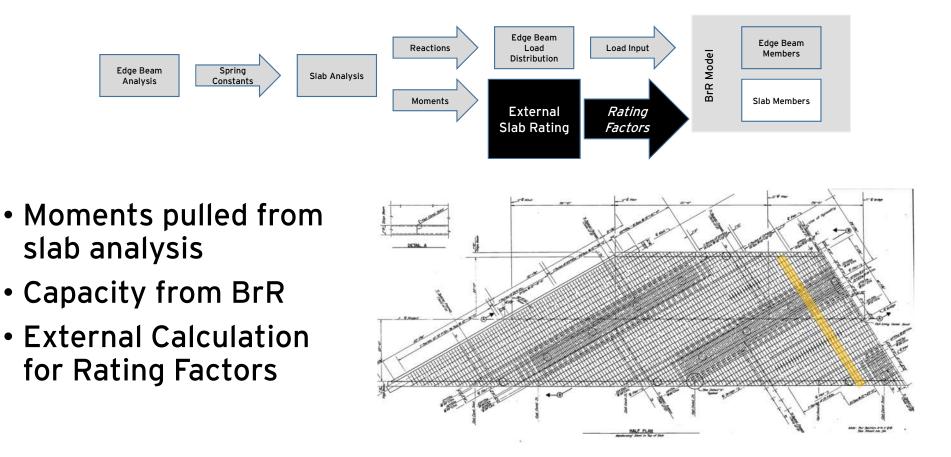
Push at Critical Locations



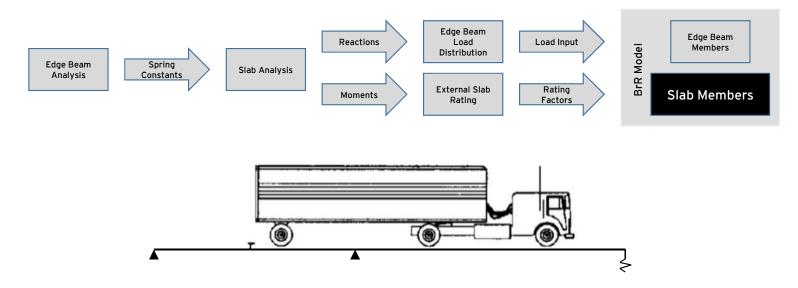

- Used Spring Constants
- Manual Truck Placement
- Effective Strip Width per AASHTO

• Calculate from Slab Strip Reactions at Spring Supports

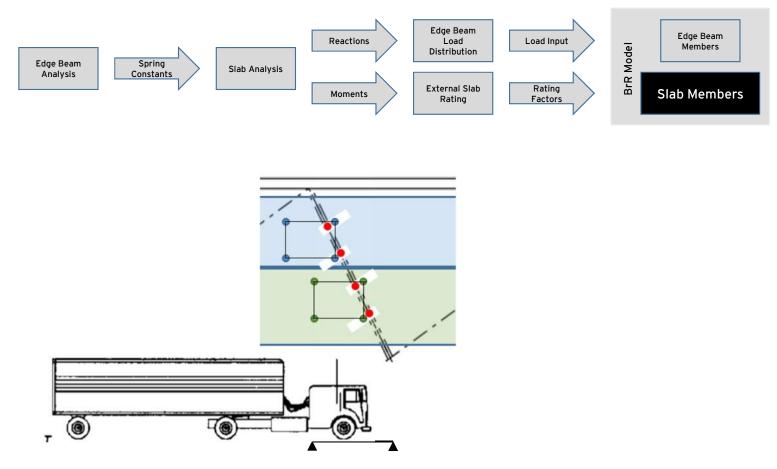
- Girder Line Superstructure
- Omit Support Point POI
 - Analyze at Face of Pier
- Input for Load Distribution

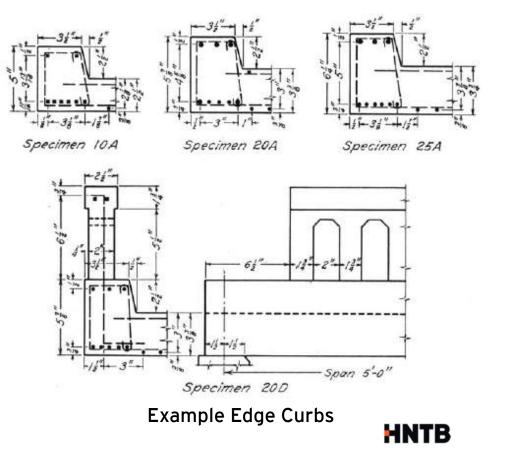

"Turn Off" Self Weight

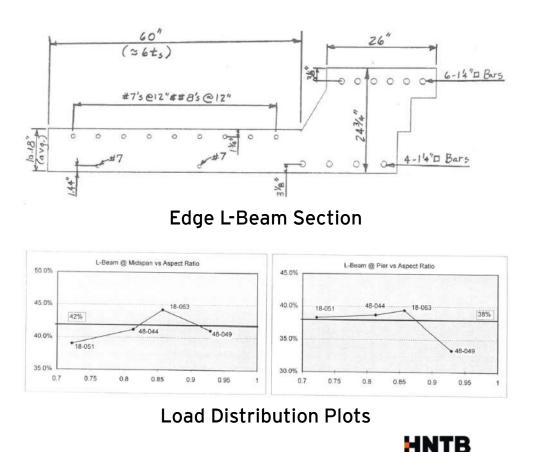
LFD		From	From		
Points of Interest Generate at tenth points except supports	^	Span	Start (in)	End (in)	
 Generate at support points Generate at support face & critical shear points 		1	29.397	33.317	
 Generate at section change points Generate at user-defined points 		2	33.317	33.317	
Ignore shear		3	33.317	33.317	
Distribution Factor Application Method O By axle		4	33.317	33.317	
By POI	~	5	33.317	29.397	


Control Options

Effective Supports






General Description:

- Continuous Concrete Slabs
- 22-45 ft Spans
- Integral Edge Curbs
- 26-33 ft Widths
- Empirical Simple Span Design

Methodology:

- Notional Beams
 - Edge "L" beams
 - Center slab
- Estimated Load Distribution

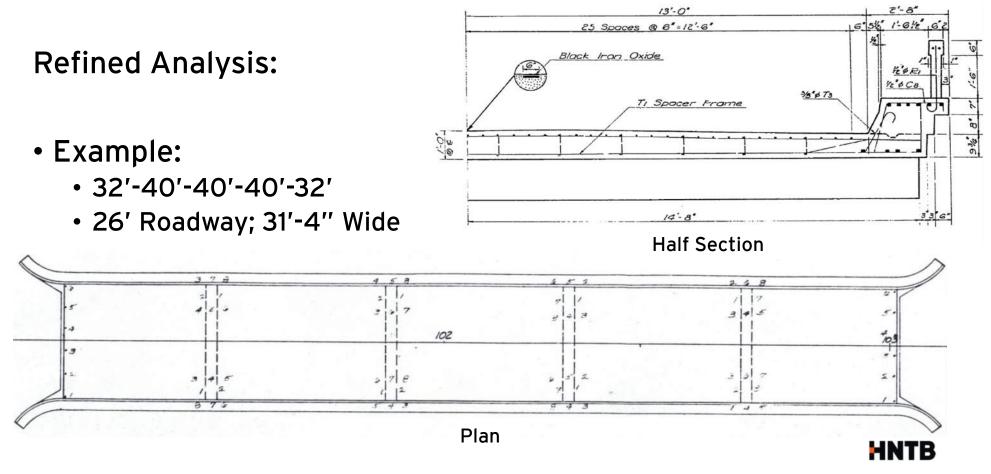
Procedure:

- 1. Instrument & Field Load Test
- 2. Refined (Finite Element) Analysis
- 3. Load Distribution Behavior
- 4. Line Analysis Ratings

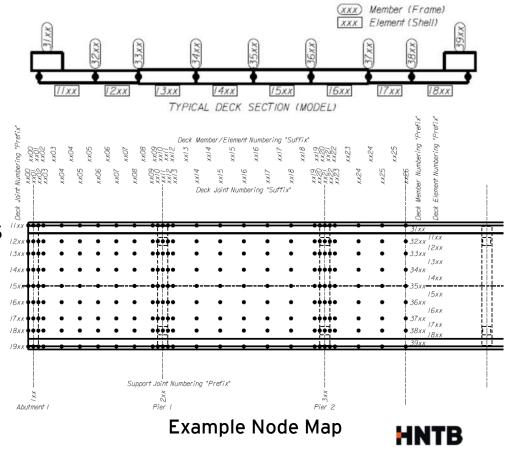
Continuous IBS Bridge

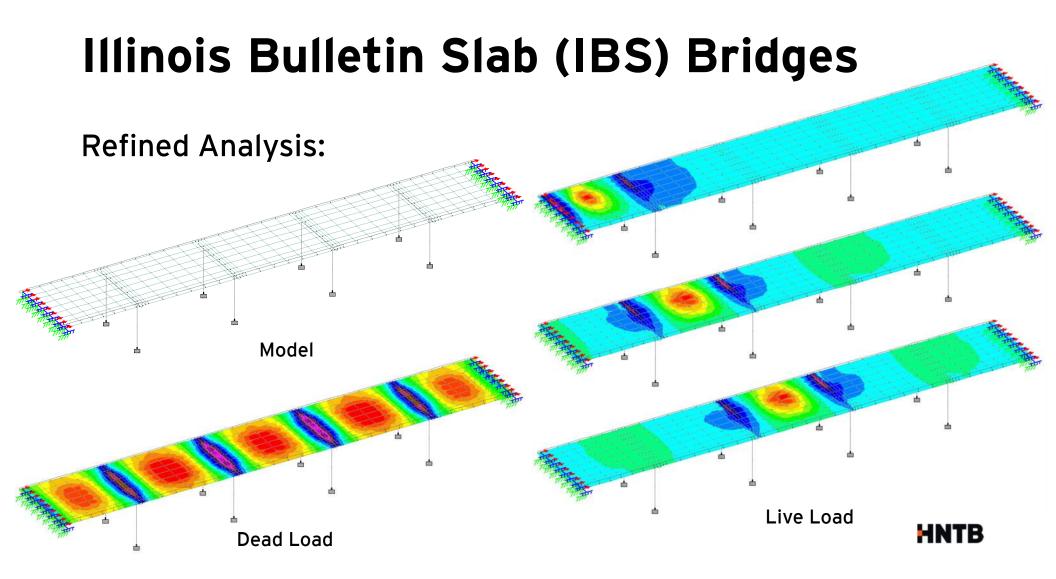
Field Investigations:

- 6 In-Service IBS bridges
- Inspect, Instrument, and H/HS Load Test

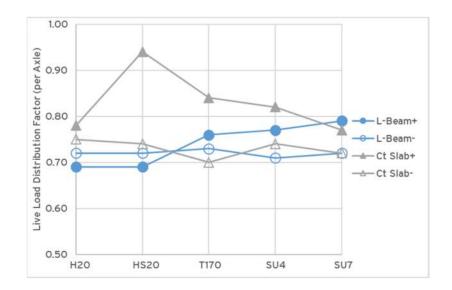


Load Test Vehicles


Field Inspection



Refined Analysis:


- Frames and "Thick" Shells
- Section Properties
 - Field load test calibrated
 - Uncalibrated "plan" dimensions
- Discretized at
 - Element boundaries
 - ~L/6 of clear span
 - Additional near support faces

Load Distribution:

- Dead load
- Live Load
 - Single- & multi-lane
 - Low sensitivity to vehicle configuration

LLDF - Vehicle Configuration

BrR Modeling:

- Line girder superstructure
 - Edge L-beams
 - Center slab
- T-Beam Member Type
 - Inverted L-beam
 - Wide "web" overpredicts shear capacity - not critical

T-Beam Input

BrR Modeling:

- Re-Define Self-Weight
 - Member Alternative definition
 - Remove tributary self-weight
 - Apply as line load
- Live Load Distribution
 - Single- & multi-lane values

Member A	lternative	e: Edge L	-Beam				
escription	Specs	Factors	Engine	Import (Control Option	ns	
Descripti			J				
Girder or	nertvin	out metho	4	Endhea	ring location:		
	edule ba			Left	15.0000	in	
O <u>C</u> ro	ss-sectio	in based			15.0000		
Sustained	d modula	r ratio fact	or	Right	13.0000	in	
	2.000				Defa	ult rati <u>ng</u> meth	hod:
Self Load	1				LFD)	•
Load c	ase: E	ngine Ass	igned		•]		
Additio	nal self lo	nad =	1.951	Lin /A			
			_	kip/ft			
Additio	nal self lg	jau =	-100.0	%			

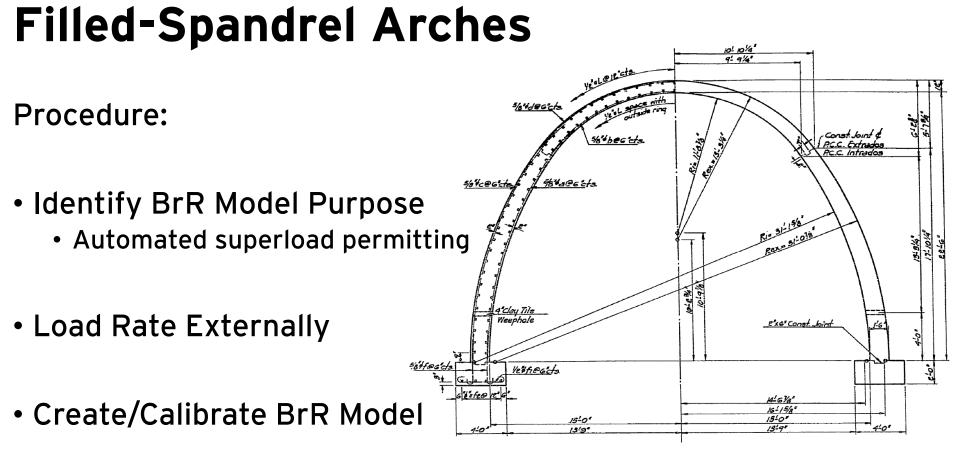
Self-Weight Input

BrR Modeling:

- Substructure Restraint
 - Define rotational and translational springs
- Control Options
 - Omit support point POIs

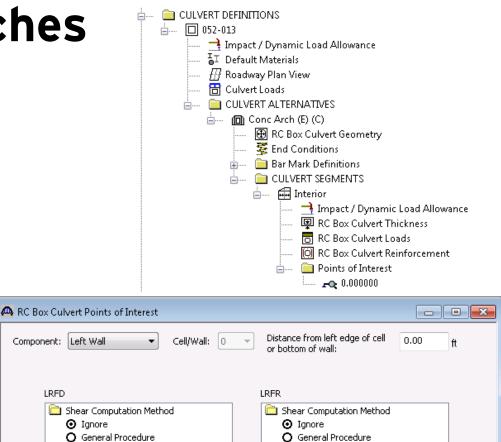
Description	Specs	Factors	Engine	Import	Control C	ptions
LFD						
C Points	of Intere:	st				^
🗹 Ge	nerate at	tenth poin	ts except	supports		
		support p				
		support fa			r points	
Generate at section change points						
Generate at user-defined points						
Ignore	shear					
📄 Distrib	ution Fac	tor Applic	ation Met	hod		
O By	axle					
By POI						

Control Options


Scope & Methodology:

- Buried Arch Structures
 - Reinforced Concrete
 - Unreinforced
 - Structural Plate (Corrugated)
- "Static Rating Factor" Models
 - Same RF for any vehicle
 - Useful For Any Non-Conforming Bridge

Reinforced Concrete Filled-Spandrel Arch



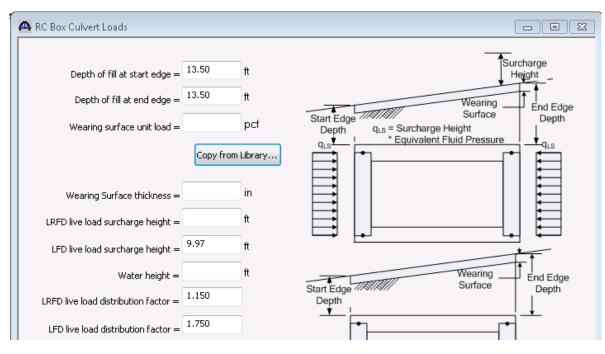
Reinforced Concrete Arch Typical Section

BrR Modeling:

- Culvert Model
- Single Point of Inspection
 - Base of exterior wall
- Notional Properties
 - Geometry
 - Materials and reinforcing

O Simplified Procedure

HNTB

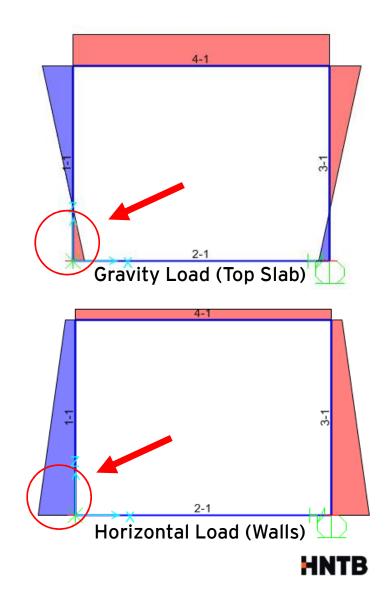

BrR Definitions

LRED

O Simplified Procedure

BrR Modeling:

- Calibrate Lateral Loads
 - Horiz. earth pressure EH overcomes vert effects
 - Live load surcharge LS determines RF
 - Critical superload



BrR Culvert Loads

BrR Modeling:

- Moment at Wall Base POI
 - DL, EV and LL (+)
 - EH and LS (-)
 - Choose: EH > EV+DL
 - Choose: LS > (expected) LL
 - BrR uses LS (constant), but no LL
 - Vehicle approaching culvert

BrR Modeling:

Report Type Rating Results Summary 🔹 🔻			۰ ۱	mpact Loa Requested	Display Format Mutiple rating levels per ro				
						tailed	_	<u> </u>	
Live Load	Live Load Type	Rating Method	Inventory Load Rating (Ton)	Operating Load Rating (Ton)	Inventory Rating Factor	Operating Rating Factor	Inventory Component	Inventory Location (ft)	Inventor Locatio (%)
HS 20-44	Axle Load	LFD	30.24	50.51	0.840	1.403	Ext. Wall 1	0.00	0.00
NRL	Axle Load	LFD	33.60	56.12	0.840	1.403	Ext. Wall 1	0.00	0.00
SU4	Axle Load	LFD	22.68	37.88	0.840	1.403	Ext. Wall 1	0.00	0.0
SU5	Axle Load	LFD	26.04	43.49	0.840	1.403	Ext. Wall 1	0.00	0.0
SU6	Axle Load	LFD	29.19	48.75	0.840	1.403	Ext. Wall 1	0.00	0.0
SU7	Axle Load	LFD	32.55	54.37	0.840	1.403	Ext. Wall 1	0.00	0.0
1 K H 20-44	Axle Load	LFD	16.80	28.06	0.840	1.403	Ext. Wall 1	0.00	0.0
2 K Type 3	Axle Load	LFD	21.00	35.07	0.840	1.403	Ext. Wall 1	0.00	0.0
4 K Type 3S2	Axle Load	LFD	30.24	50.51	0.840	1.403	Ext. Wall 1	0.00	0.0
5 K Type 3-3	Axle Load	LFD	33.60	56.12	0.840	1.403	Ext. Wall 1	0.00	0.0
6 Type T130	Axle Load	LFD	54.61	91.19	0.840	1.403	Ext. Wall 1	0.00	0.0
7 Type T170	Axle Load	LFD	71.41	119.25	0.840	1.403	Ext. Wall 1	0.00	0.0
8 Heavy Equipment Tr	Axle Load	LFD		154.27		1.403			0
Type EV2	Axle Load	LFD		40.34		1.403			•••••
Type EV3	Axle Load	LFD		60.33		1.403			0

"Static Rating Factor" Summary Table

 Specification Checks for Intel Culvert Component Ext. Wall 1 0.00 ft. Ext. Wall 2 Top Slab 1 	rior - 2 of 2 Specification Reference X 8.16.4 Compression APPG.6.1 P-M Interaction Diagram

Spec Check Detail for APPG.6.1 P-M Interaction Diagram

Max Pn = 489.60 (k	kip)
Min Pn = 0.00 (kir	p) Mx: 0.00, My: 0.00
DC Moment	= 10.5282 (kip-ft)
DW Moment	= 0.0000 (kip-ft)
EV Moment	= 61.2804 (kip-ft)
EH(max) Moment	= -66.2664 (kip-ft)
EH(min) Moment	= -66.2664 (kip-ft)
ES Moment	= 0.0000 (kip-ft)
LS Moment	= -28.3547 (kip-ft)
DC Axial	= 9.8000 (kip)
DW Axial	= 0.0000 (kip)
EV Axial	= 28.5211 (kip)
EH(max) Axial	= 0.0000 (kip)
EH(min) Axial	= 0.0000 (kip)
ES Axial	= 0.0000 (kip)
LS Axial	= 0.0000 (kip)
Total DL(max) Moment	= 5.5422 (kip-ft)
Total DL(min) Moment	
Total DL(max) Axial	
Total DL(min) Axial	
,, ibitat	concurs (map)

Spec Check Moment Components

Conclusions

- Complex Slab Systems
 - Line analysis BrR models
 - "Inverted" T-beams for integral curbs
 - Load distribution calculated externally
 - Load testing
 - Finite element modeling
 - Vehicle paths transverse to members
 - Short simple spans for transverse members
- "Static Rating Factor" Models
 - Single POI culvert BrR models
 - Rating calculated externally
 - Earth pressures calibrated for desired RF

Questions?

Thanks to:

