Michael Baker

We Make a Difference

Load Rating of the Bonners Ferry Bridge: A Case Study of Evaluating Post-Tensioned SteelGirders

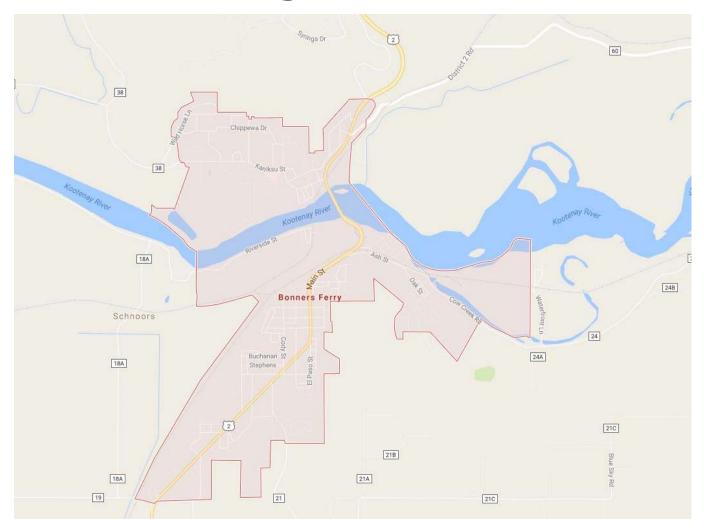
Michael Baker

We Make a Difference

Presented by: DanielBaxter,PE.,SE. *MichaelBakerInternational*

Outline

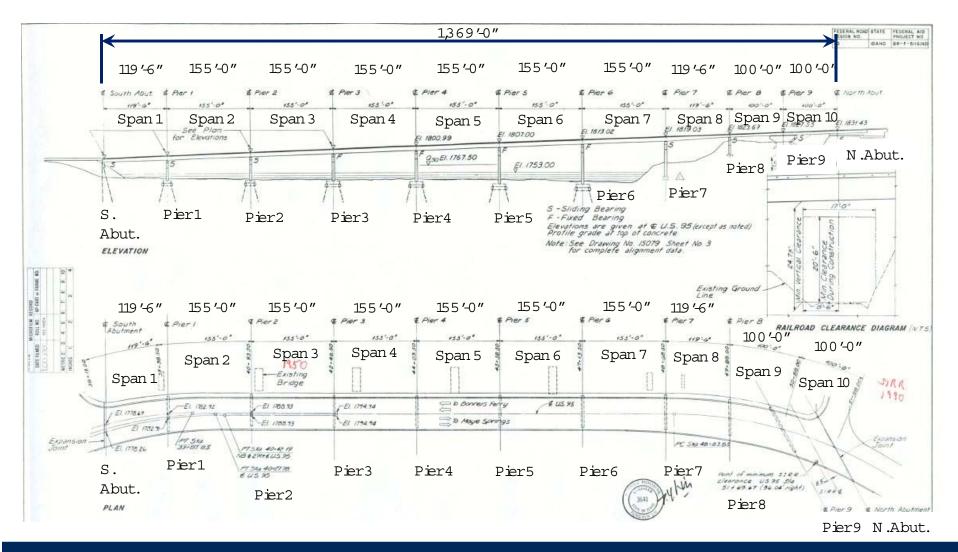
- Project location and bridge type
- Post-tensioning configuration
- Applicability to BrR
- Structuralanalysis
- Strength evaluation
- Results
- Load rating tool
- Conclusions

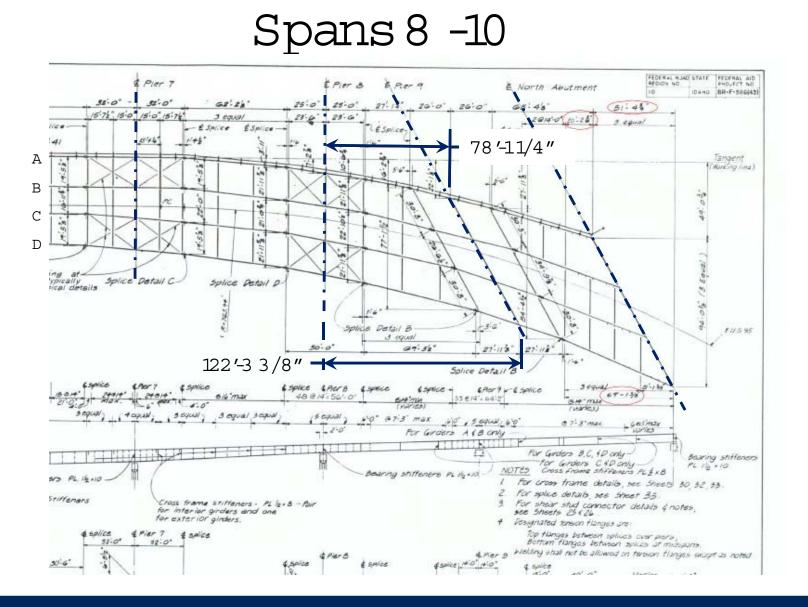


Bridge Location

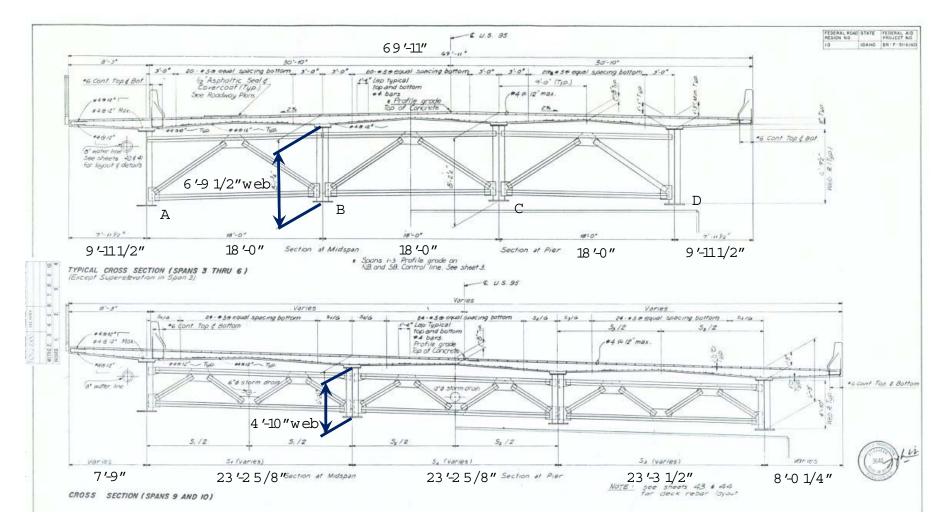
Bridge Location

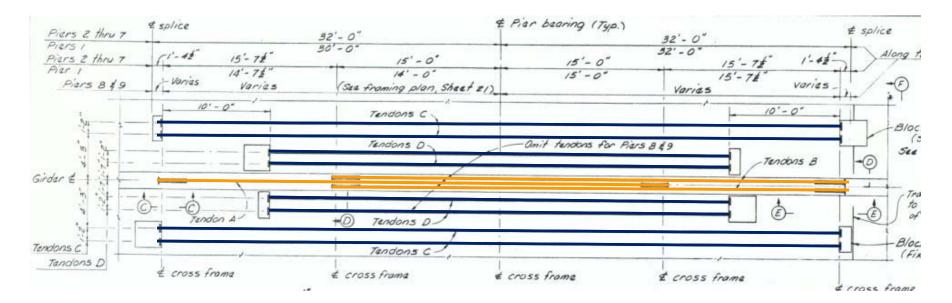
Bridge Location


Bridge History


- Opened in 1984
- Longitudinally post-tensioned steelplate girders
- Transversely post-tensioned deck
- 20% reduction in steel
- Deck and superstructure condition rating of 7

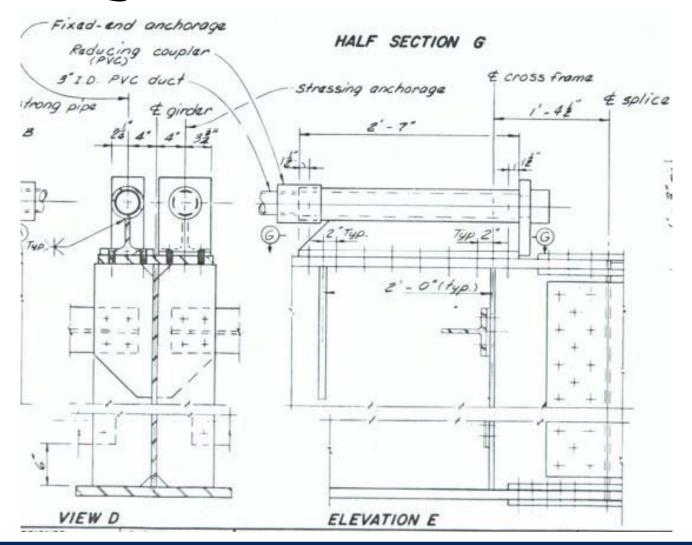
Plan and Elevation




We Make a Difference

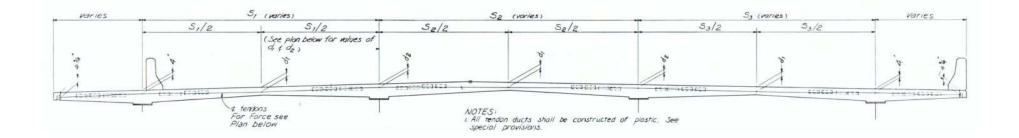
Michael Baker

Transverse Section


LongitudinalGirderand Deck Tendons

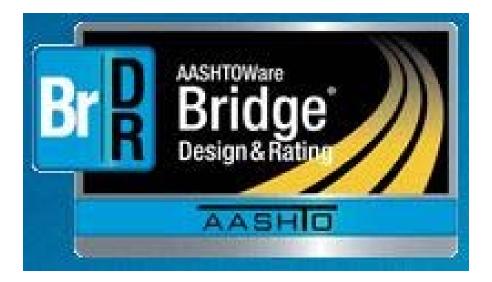
Tendon A and B force after long-term losses = 197 kips (5 - 0 6" diam eterstrands - girder tendons)

Tendon C and D force after bng-term bsses = 159 kips (4 - 0.6" diam eterstrands - deck tendons)


LongitudinalTendon Details

LongitudinalTendon Details

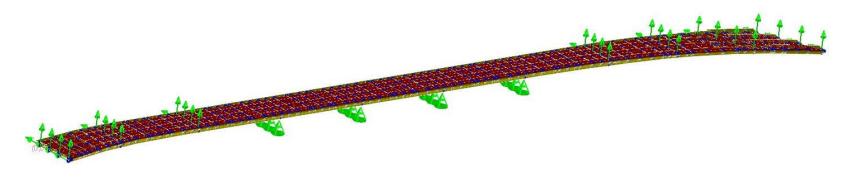
Tendons B	EA 4'E	'-7" ∉ Tandons D,€ -8" '-2" 8"	€ Jandons C2€ 2°8° 1'-2° 8'
-			00000
		Blockouts - Piers I thru Blockouts Piers B \$ 9 Single tendon only See Sheet #4 for detoil	Tendon C blockout See Sheet 43 for dat For notes and relative locations of transverse
z = z =		NOTE	and longitudinal tandoi see Sheet 24


Transverse Tendons

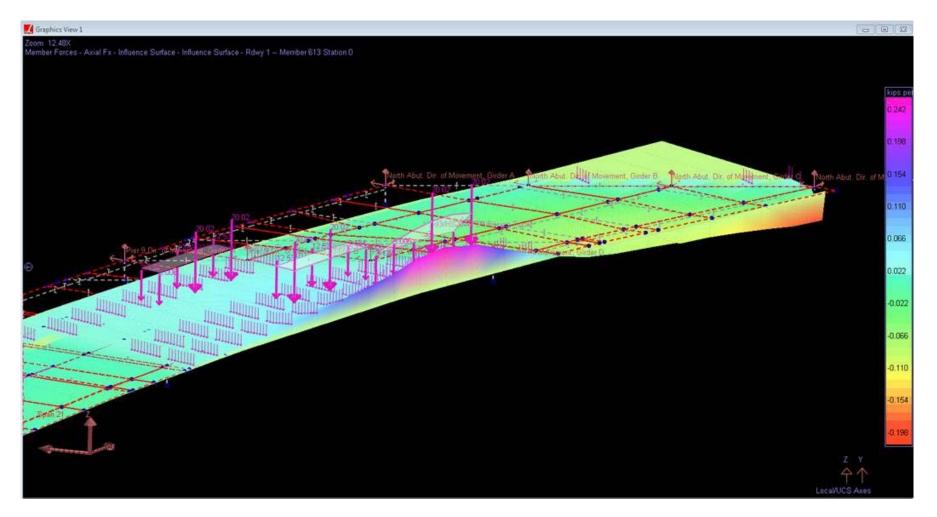
- 4 0.6" diam eterstrands in 1" x 2" plastic ducts
- 30" typical tendon spacing

Applicability to BrR

- Longitudinally post-tensioned steelplate girders and post-tensioned deck slabs are not supported
- Girderspacing would be okay for 3D analysis



GeneralLoad Rating Procedure


- M odelbridge using generalpurpose FEA software
- Identify points of interest using spreadsheet postprocessing
- Provide required design, legal, and perm it ratings
- Extract influence lines forpoints of interest
- Develop an autom ated bad rating toolthat can bad rate user-defined perm it vehicles

Larsa M odel

- 3D grillage m odelw ith construction staging
- Girdersmodeledwithsinglelinesofbeamelements
- Flange lateralbending stresses estim ated (C6 10 1)
- Live bads applied to shellelem ents
- Loadsmovetransversely across deck using influence surfaces

Larsa M odel

Strength Evaluation

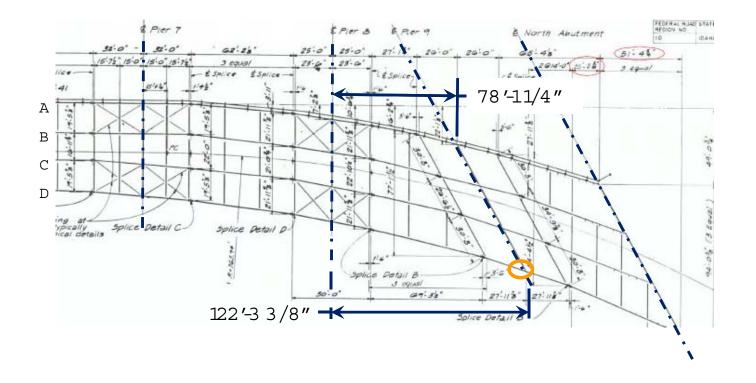
- Designed with bad factordesign
- Stress from post-tensioning after bases added to bads and com pared with resistance

 $\begin{array}{c} Girder & Strasses: -M @ Pier _ 1\\ \hline 0 & DL, & Section & D\\ \hline 0 & DL. & Section & D\\ \hline 0 & DL. & & \\ \hline 0 & OL. & & \\ \hline 0 & Girder & Prestrassing & f_{e_s} = 22.93 tsi & (emps.)\\ \hline 0 & Girder & Prestrassing & f_{e_s} = 4.06 tsi & (Temps.)\\ \hline 0 & long. Deck & Prestrassing & fec = 696 psi & (emps.)\\ \hline f_{e_s} = 13.95 tsi & (emps.)\\ \hline f_{e_s} = 2.73 tsi & (fermin)\\ \hline 0 & f_{e_s} = 2.73 tsi & (fermin)\\ \hline 0 & \hline$ $= \frac{Bottom \ Flanga}{0} \qquad \textcircled{O} \qquad \end{matrix}{O} \qquad \textcircled{O} \qquad \textcircled{$ (Fp = 47. 00 ks

LRFR Load Rating

- Initially followed a sim ilarapproach for Strength limit states
- Low ratings in GirderD over Pier9

										<i>x</i>			
	Element to Check Total Factored Loads with Noncomposite Moment Magnification												
		Element Part		Factored Axial Force	Factored Horizontal Shear	Factored Vertical Shear	Factored Torsion	Factored Moment	Factored Moment				
Maximum Demand/C apacity Ratio Rank	Element		Element + Part	Ax	Vy	Vz	Mx	My	Mz	Maximum Demand/Capacity Ratio	Top Flange Stress	Bottom Flange Stress	Controlling
		(i.e. i,j,2/4)		(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)				
1	21109	J	21109_J	-1015.73	-40.26	552.82	-219.03	-12747.33	-1056.39	1.95	Tension	Compression	Composite Com
2	21110	1	21110_I	-1003.99	52.17	-581.53	36.26	-12548.38	-1057.21	1.93	Tension	Compression	Composite Com
3	21092	J	21092_J	-949.32	-19.80	520.93	-173.18	-11229.19	-414.99	1.92	Tension	Compression	Composite Com
4	21093	1	21093_I	-937.73	14.54	-531.76	129.84	-11143.10	-421.50	1.90	Tension	Compression	Composite Com
5	21092	I	21092_I	-949.46	-20.77	506.97	-173.95	-10185.19	-387.63	1.74	Tension	Compression	Composite Com
6	21091	J	21091_J	-942.41	-19.27	502.38	-89.44	-10270.25	-374.45	1.70	Tension	Compression	Composite Com
7	20108	J	20108_J	-978.38	20.25	543.75	-144.10	-11185.81	110.20	1.66	Tension	Compression	Composite Com
8	20109	1	20109_I	-978.33	-3.99	-556.22	-53.95	-11143.46	28.74	1.65	Tension	Compression	Composite Com
9	20093	1	20093_I	-955.40	-26.37	-503.71	46.45	-9811.19	467.93	1.65	Tension	Compression	Composite Com
10	20092	J	20092_J	-951.05	21.81	509.94	4.05	-9810.44	466.29	1.65	Tension	Compression	Composite Com
11	21108	J	21108_J	-1015.12	-34.18	523.40	-208.91	-10728.36	-882.16	1.65	Tension	Compression	Composite Com
12	21109	T	21109_I	-1015.89	-38.59	523.37	-212.25	-10727.25	-883.10	1.65	Tension	Compression	Composite Com
13	20091	J	20091_J	-945.33	19.15	483.93	-40.51	-8699.45	410.55	1.51	Tension	Compression	Composite Com
14	21111	1	21111_I	-1002.57	41.95	-533.13	25.43	-9758.17	-741.78	1.50	Tension	Compression	Composite Com
15	21110	J	21110_J	-1005.72	47.23	-532.82	32.39	-975 <mark>3.</mark> 99	-733.48	1.50	Tension	Compression	Composite Com
16	20092	1	20092_1	-951.96	16.55	489.83	33.36	-8791.27	394.76	1.48	Tension	Compression	Composite Com
17	21069	J	21069_J	-2153.31	-4.41	604.95	-30.41	-13079.68	53.75	1.46	Tension	Compression	Composite Com


Summary of Code Check Results Sorted by Demand/Capacity Ratio

Constructibility Check? Yes

Yes

Moment Magnification?

GirderD overPier9

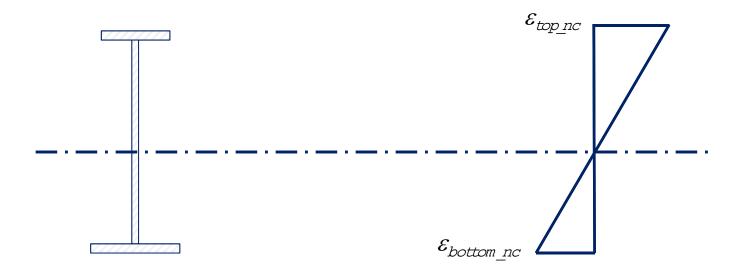
GirderD overPier9 - HL93 Inventory (initialassum ption of uncracked section)

- σ_{nc_top} = 455 ksi
- $\sigma_{n_composite_top}$ = 1.6 ksi
- $\sigma_{3n_composite_top} = 14$ ksi
- $\sigma_{pt_{top}}$ = -2.3 ksi
- <u> σ_{top_total} =461ksi</u>
- $\phi_f F_{nt} = 50 \text{ ksi}$
- <u>D/C = 0 92</u>

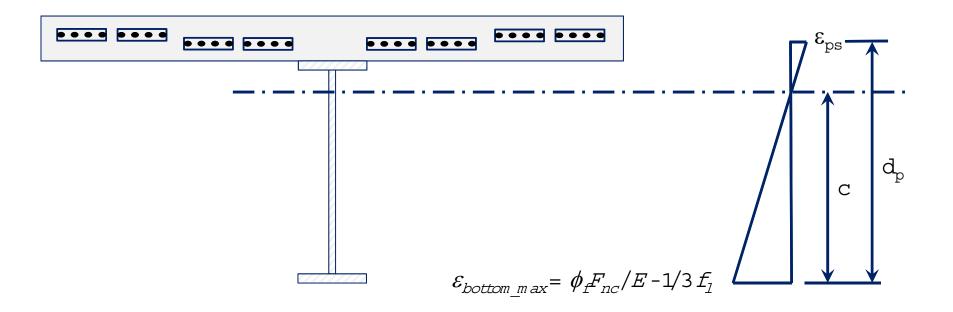
- σ_{nc_bottom} = -24 6 ksi
- $\sigma_{n_com_posite_bottom}$ = -216 ksi
- $\sigma_{3n_com_posite_bottom} = -4.0$ ksi
- σ_{pt_bottom} = -19 ksi
- $\sigma_{\underline{bottom_total}}$ = -523 ksi
- $\phi_{f}F_{nc} 1/3f_{l} = -425$ ksi

• D/C = 123

However, top of slab stress is 60% above f_r . Therefore, compute stresses using cracked section properties instead.

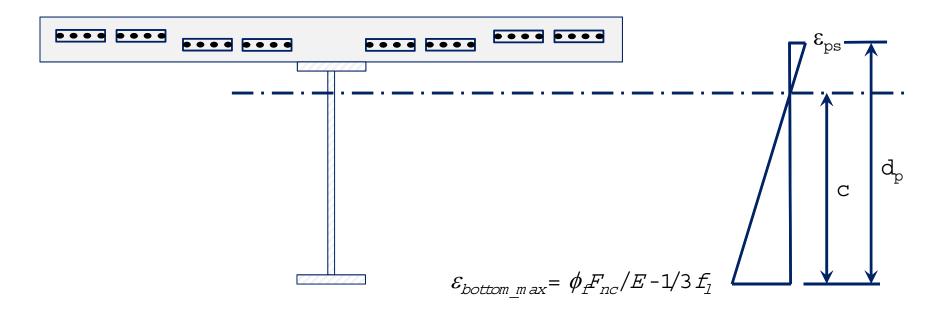

GirderD overPier9 – HL93 Inventory

- $\sigma_{nc_{top}}$ = 455 ksi
- $\sigma_{cracked_{top}}$ = 49.6 ksi
- $\phi_f F_{nt} = 50 \text{ ksi}$
- D/C = 190

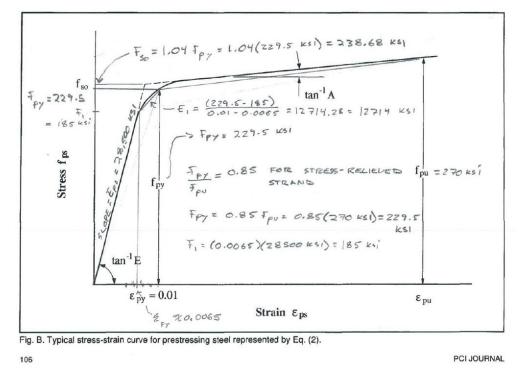

- σ_{nc_bottom} = -24 6 ksi
- $\sigma_{cracked_{bottom}}$ = -29.6 ksi
- $\sigma_{\underline{bottom_total}}$ = -54 2 ksi
- $\phi_{f}F_{nc} 1/3f_{l} = -425$ ksi
- D/C = 128

Ultimate Moment Strength

- ForGirderD overPier9, results are very sensitive to cracked section assumption
- Using strain com patibility provides a m ore consistent approach
- Strain compatibility in conjunction with maximum factored stress in bottom compression flange is consistent with AASHTO LRFD steeland prestressed concrete



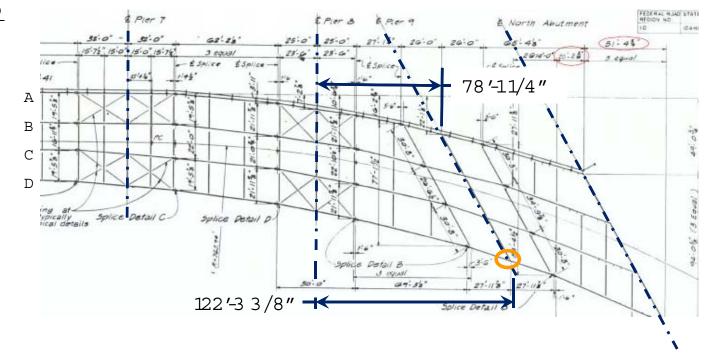
- 1. Find strain in extrem e fibers due to factored noncom posite dead bad applied to noncom posite girder
- 2. Find additional strain that when added to compression flange will cause buckling: $\mathcal{E}_{bottom_max} = \mathcal{E}_{bottom_nc} + \mathcal{E}_{additional}$ $\mathcal{E}_{bottom_max} = \phi_f F_{nc} / E - 1/3 f_1$



3 . Choose a value for $f_{ps} = f_{pe} + f_s$, set internal tension equal to internal compression and solve for neutralaxis location c

4 Use cand $\mathcal{E}_{additional} = \mathcal{E}_{bottom_max} - \mathcal{E}_{nc}$ to find \mathcal{E}_s , additional strain in prestressing steeldue to composite bads

5.Using \mathcal{E}_s , calculate f_s , the additional stress in the prestressing steel due to composite bads

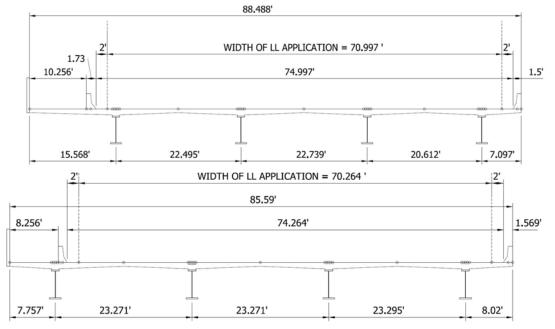

6 . Iterate the value chosen for f_{ps} until $f_{pe} + f_s = f_{ps}$. Bilinear stressstrain relationship used for prestressing steel

7. Check internal force equilibrium and sum internalm om ents to find m om ent capacity.

We Make a Difference

GirderD overPier9 – HL93 Inventory

- $M_u = 12,904$ k-ft
- $\phi M_{n \text{ strain com patibility}} = 11,134 \text{ k-ft}$
- D/C = 1.16


Service IICheck

- LRFD Service Lim it State provisions
- Stresses from post-tensioning after bases added as bads
- $\sigma_{tf} < 0.95 R_h F_{vt}$ (6 10 4 2 2 - 1)
- $1/3\sigma_1 + \sigma_{bf} < 0.95R_hF_{yc}$

- (6 10 4 2 2 1)

Transverse Analysis

- AASHTO Equivalent Strip M ethod and influence lines
- Typicaldeck, and widened deck cross-sections
- Rated for Strength I, II and Service III

Results

- Longitudinalrating, GirderD overPier9, governs
- HL-93 Strength Inventory Rating = 0.74
- HL-93 Service II Inventory Rating = 121
- HL-93 Strength Inventory Rating, Transverse Analysis = 137
- HL-93 Service IIIRating
 Transverse Analysis = 147

Autom ated Load Rating Tool

- User-defined perm it vehicles can be input
- Option to bad only one interior lane with perm it
- Deterioration from field inspections can be input
- In pact factor can be specified
- Strain-com patibility iterations are autom ated

Autom ated Load Rating Tool

AASHTO	LRFD 7th Ed. Se	ction C6.1	0.1)							
Average Daily Traffic (ADT): 9800		Truck Percenta	age (%): 9% <u>Avera</u>	age Daily Truck Traffic (ADTT):			882			
Conditon	Factor:	1.0								
System F	actor:	1.0								
	ONFIGURATI		Legal		MEMBER DETERIO	RATION:				
egal will ut	tilize the striped I	ane config	uration with the user input truck	configuration.			Sec	tion Loss Pre	esent (în.)	
										Deck
					Point of Interest & Descrip	Top Flange ion	Bottom Flange	Web	Top Spall (in)	Bottom Spall (in)
					POI 1 Girder D over Piel	9: 0%	0%	0%	0.00	0.00
RUCK	CONFIGURA	TION:			POI 2 Girder D over Piel	- 8: 0%	0%	0%	0.00	0.00
uto Popul	ate Truck Data:	HL-93	-		POI 3 Girder D over Piel	г 6: О%	0%	0%	0.00	0.00
					POI 4 Girder D over Piel	- 5: 0%	0%	0%	0.00	0.00
Axde W	leights:		Axle Spacing	3	POI 5 Girder D over Piel	- 4: 0%	0%	0%	0.00	0.00
Axle 1:	8.00 k		Axle 1 to Axle 2:	14.00 ft	POI 6 Girder D over Piel	r 3: 0%	0%	0%	0.00	0.00
Axde 2:	32.00 k		Axle 2 to Axle 3:	14.00 ft	POI 7 Girder C over Piel	- 1: 0%	0%	0%	0.00	0.00
Axle 3:	32.00 k		Axle 3 to Axle 4:		POI 8 Girder D @ Mid Span betw S. Abut. and Piel	- 1: 0%	0%	0%	0.00	0.00
Axle 4:			Axle 4 to Axle 5:		POI 9 Girder D @ Mid Span betw Pier 1 and Piel	r 2: 0%	0%	0%	0.00	0.00
Axle 5:			Axle 5 to Axle 6:		POI 10 Girder D @ Mid Span betw Pier 2 and Pier	r 3: 0%	0%	0%	0.00	0.00
Axle 6:			Axle 6 to Axle 7:		POI 11 Girder D @ Mid Span betw Pier 6 and Pier	7: 0%	0%	0%	0.00	0.00
Axle 7:			Axle 7 to Axle 8:		POI 12 Girder D @1/3 Span betw Pier 8 and Piel	r 9: 0%	0%	0%	0.00	0.00
Axle 8:			Axle 8 to Axle 9:		POI 13 Girder D @ 1/3 Span betw Pier 9 and N. Ab	ut.: 0%	0%	0%	0.00	0.00
Axle 9:			Axle 9 to Axle 10:		POI 14 Girder C over Piel	- 6: 0%	0%	0%	0.00	0.00
Axde 10:			Axle 10 to Axle 11:		POI 15 Girder C over Piel	9: 0%	0%	0%	0.00	0.00
Axle 11:			Axle 11 to Axle 12:		POI 16 Girder C @ Mid Span betw S. Abut. and Piel	- 1: 0%	0%	0%	0.00	0.00
Axle 12:			Axle 12 to Axle 13:		POI 17 Tranverse Slab, between Girder A and Girder	B: 0%	0%	0%	0.00	0.00
Axde 13:			Axle 13 to Axle 14:		POI 18 Tranverse Slab, @ Girdei	B: 0%	0%	0%	0.00	0.00
Axle 14:			Axde 14 to Axde 15:	1	POI 19 Tranverse Slab, between Girder B and Girder	·C: 0%	0%	0%	0.00	0.00
Axde 15:			Axle 15 to Axle 16:	F	0120 Tranverse Slab, between Girder C and Girder	D: 0%	0%	0%	0.00	0.00
Axle 16:			Axle 16 to Axle 17:			2				
Axle 17:			Axle 17 to Axle 18:							
Axle 18:			Axle 18 to Axle 19:							

34

PRINCIPAL STRESS ALLOWABLE PRESSURE COEFFICIENTS (k)

Inventory: 3.50

Operating: 4.50

Principal Stress Allowable Pressure = kv(fc). Default values = 3.5, 4.5 (Inv, Opr) based on AASHTO LRFD Bridge Design Specifications, 7th Editin Table 5.9.4.2.2-1 PERFORM RATING

Axle 20:

Autom ated Load Rating Tool

BRIDGE LOAD RATING INFORMATION:

Controlling LRFR Inventory Load Rating =	0.74	Controlling Location = POI 1 - Girder D over Pier 9	Limit State = BENDING
Controlling LRFR Operating Load Rating =	0.96	Controlling Location = POI 1 - Girder D over Pier 9	Limit State = BENDING

INDIVIDUAL ELEMENT LOAD RATING INFORMATION:

		Strength Load	Rating Factor	Service Rating Factor & Stresses				Controlling Rating (Tons)	
Point of	Interest & Description	Inventory Rating	Operating Rating	Inventory Rating	Operating Rating	INV Applied (ksi)	INV Allowed (ksi)	Inventory Rating	Operating Rating
POI 1	Girder D over Pier 9	0.74	0.96	1.21	1.54	43.75	47.50	26.74	34.66
POI 2	Girder D over Pier 8	0.88	1.14	1.32	1.67	41.45	47.50	31.75	41.15
POI 3	Girder D over Pier 6	1.15	1.49	1.33	1.69	41.53	47.50	41.34	53.59
POI 4	Girder D over Pier 5	1.20	1.56	1.43	1.81	39.96	47.50	43.37	56.22
POI 5	Girder D over Pier 4	1.18	1.53	1.41	1.79	40.23	47.50	42.44	55.02
POI 6	Girder D over Pier 3	1.18	1.53	1.40	1.77	40.45	47.50	42.59	55.21
POI 7	Girder C over Pier 1	1.19	1.55	1.44	1.83	40.38	47.50	42.99	55.73
POI 8	Girder D @ Mid Span betw S. Abut. and Pier 1	6.22	8.07	1.38	1.79	39.03	47.50	49.66	64.56
POI 9	Girder D @ Mid Span betw Pier 1 and Pier 2	0.98	1.27	1.46	1.90	37.34	47.50	35.13	45.54
POI 10	Girder D @ Mid Span betw Pier 2 and Pier 3	1.03	1.33	1.56	2.02	36.15	47.50	36.91	47.85
POI 11	Girder D @ Mid Span betw Pier 6 and Pier 7	1.00	1.29	1.42	1.84	38.87	47.50	35.96	46.61
POI 12	Girder D @1/3 Span betw Pier 8 and Pier 9	1.06	1.37	1.62	2.11	34.36	47.50	38.06	49.33
POI 13	Girder D @ 1/3 Span betw Pier 9 and N. Abut.	1.03	1.33	1.53	1.99	37.02	47.50	36.97	47.93
POI 14	Girder C over Pier 6	1.23	1.59	1.45	1.84	40.09	47.50	44.19	57.28
POI 15	Girder C over Pier 9	0.84	1.09	1.32	1.67	42.06	47.50	30.41	39.42
POI 16	Girder C @ Mid Span betw S. Abut. and Pier 1	5.90	7.65	1.32	1.71	40.60	47.50	47.42	61.64
POI 17	Tranverse Slab, between Girder A and Girder B	1.37	1.78	1.47	NA	-0.05	0.42	49.31	63.92
POI 18	Tranverse Slab, @ Girder B	1.73	2.25	1.47	NA	0.12	0.42	52.84	80.85
POI 19	Tranverse Slab, between Girder B and Girder C	1.80	2.34	2.05	NA	-0.46	0.42	64.93	84.17
POI 20	Tranverse Slab, between Girder C and Girder D	1.41	1.83	1.55	NA	-0.15	0.42	50.92	66.01

Conclusions

- 3D analysis revealed unexpected perform ance issues at skew ed support
- Strain com patibility useful for obtaining additional capacity with post-tensioned steel
- Longitudinalrating, Strength IoverPier9 controls
- Autom ated bad rating toolw ill facilitate future perm it evaluations

Thank You!

Idaho Transportation Departm ent

MichaelBakerInternational:

- Mitch Cook, PE.
- Joe Kauzlarich, PE.
- ParkerThom son, PE., SE.
- Frank Russo, PhD., PE.
- Krista Stippelmans, E.IT.
- Yingchao Sun, EJT.
- Teresa W asheleski, E III.
- Em ily W inn, PE.
- Alan Yates, PE.
- Jenny Zhou, PE.
- KentZinn, PE., SE.

Michael Baker

INTERNATIONAL

Questions?

