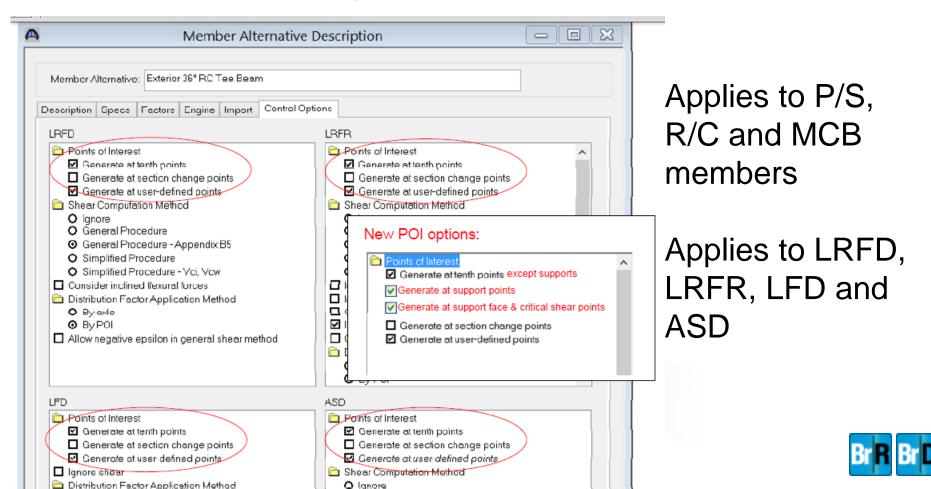
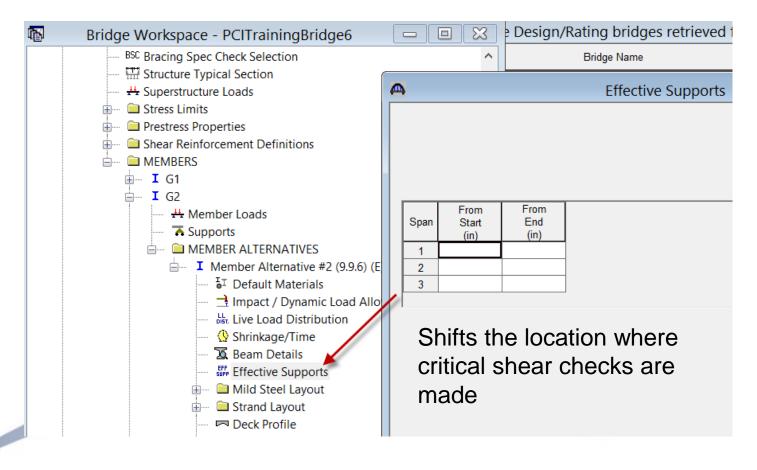
AASHTOWare Bridge Design and Rating


Technical Update

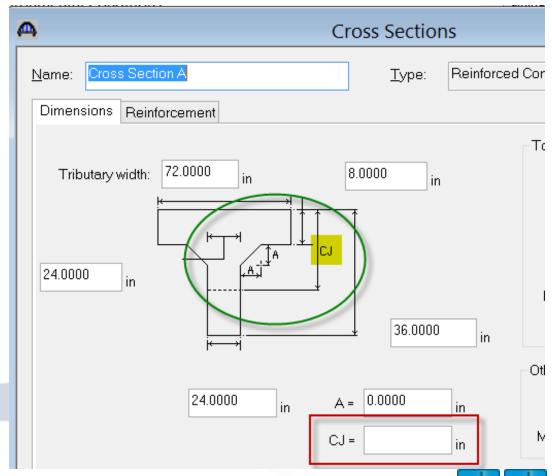
User Group Training Meeting Chicago – August 2016


Concrete Enhancement (Caltrans and Task Force)

• Point-of-Interest Control Options – (supports, 10th points, critical shear locations)

Concrete Enhancement (Caltrans and Task Force)

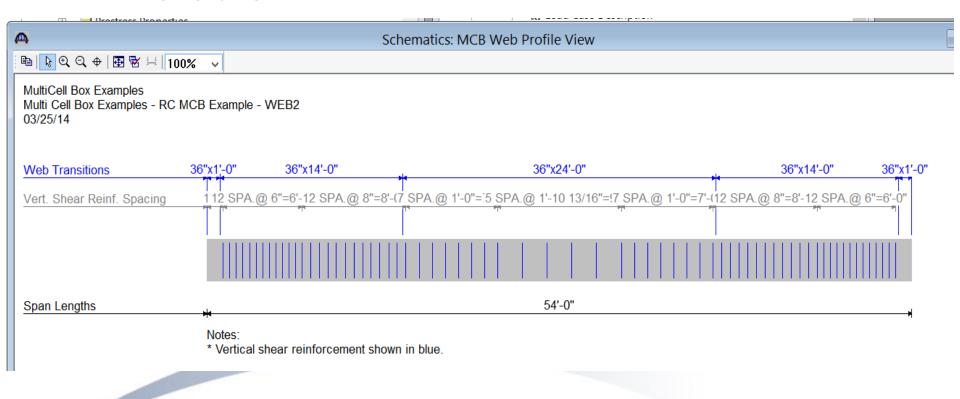
 Specify effective support locations for all concrete beams (R/C and P/S members, already in MCB)



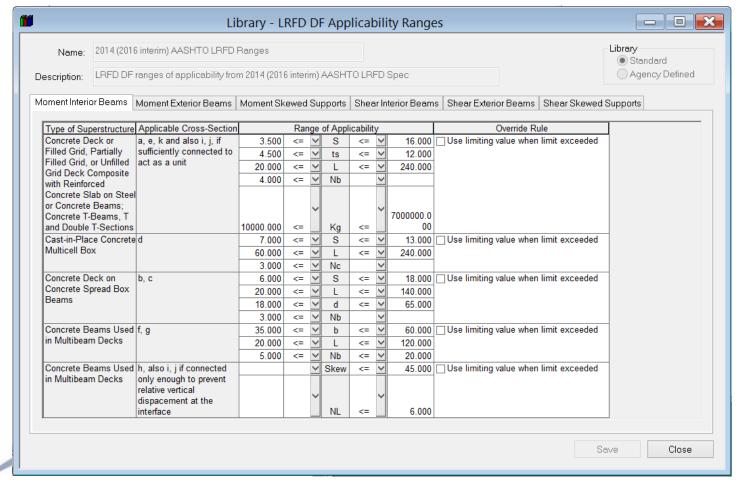
Concrete Tee Beam Enhancement (Caltrans)

Construction Joint for RC Tee Beams

For both cross-section based and schedule based


Development length is adjusted for bars in close proximity to the joint

Multi-cell Concrete Box Enhancement (Caltrans)


 Added a Web Schematic to Show Stirrups and Dimensions

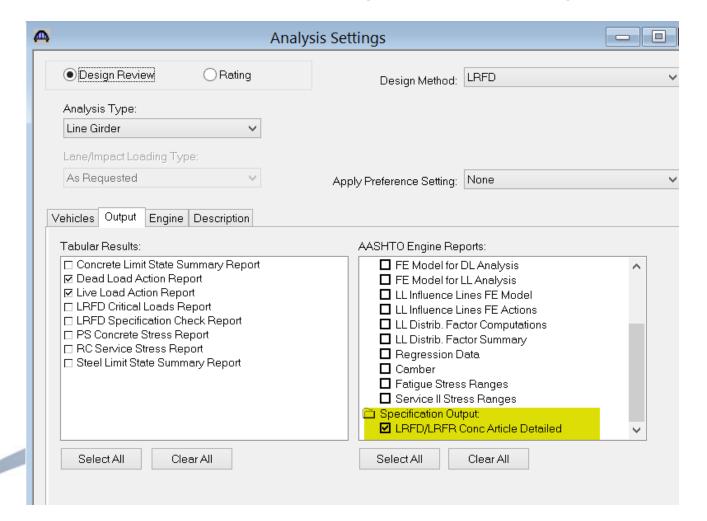
Steel and Concrete Enhancement (Caltrans)

 Added Range of Applicability Override for LRFD Distribution Factors Calculations

Added Range of Applicability Override for LRFD Distribution Factors Calculations (continued)

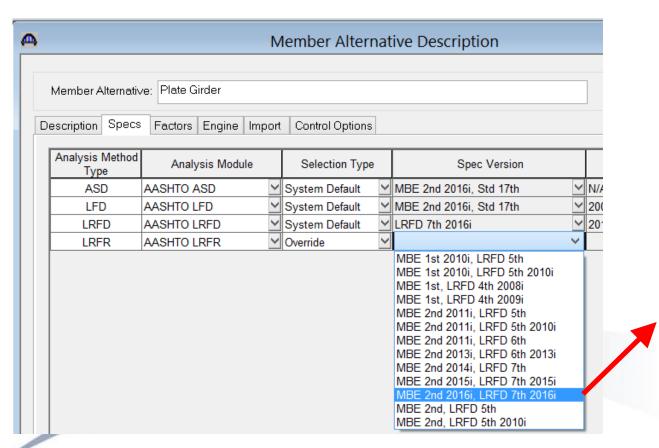
1	Range of Applicability							Override Rule			
	3.500	<=	>	S	<=	Y	16.000	Use limiting value when limit exceeded			
	4.500	<=	>	ts	<=	Y	12.000				
	20.000	<=	>	L	<=	Y	240.000				
	4.000	<=	×	Nb		Y					
	10000.000	<=	~	Kg	<=	~	7000000.0 00	Override Rules When the Override Rule over violated, BrDR will use the			
	7.000	<=	>	S	<=	Y	13.000	2. When the Override Rule of			
	60.000	<=	Y	L	<=	Y	240.000	a. When the value of			

Override Rules


- When the Override Rule checkbox is not selected and the range violated, BrDR will use the Lever Rule Override.
- When the Override Rule checkbox is selected and the variable.
 - When the value of the variable is smaller than the range. use the lowest applicability range value.
 - b. When the value of the variable is larger than the range of use the Lever Rule Override
- When the Override Rule checkbox is selected and the variable.
 - a. When the value of the variable is smaller than the range use the Lever Rule Override
 - b. When the value of the variable is larger than the range of use highest applicability range value.

If range is violated and checkbox is unchecked use Lever Rule. If range is violated and checkbox is checked refer to Help.

Concrete Enhancement (Caltrans)


Option to disable concrete spec article output

Annual AASHTO Engine Specification Updates

- ☐ MBE 2nd Edition, 2016 interim
- ☐ LRFD 7th Edition 2016 interim

MBE 1st 2010i, LRFD 5th

MBE 1st 2010i, LRFD 5th 2010i

MBE 1st LRFD 4th 2008i

MBE 1st LRFD 4th 2009i

MBE 2nd 2011i, LRFD 5th

MBE 2nd 2011i, LRFD 5th 2010i

MBE 2nd 2011i, LRFD 6th

MBE 2nd 2013i, LRFD 6th 2013i

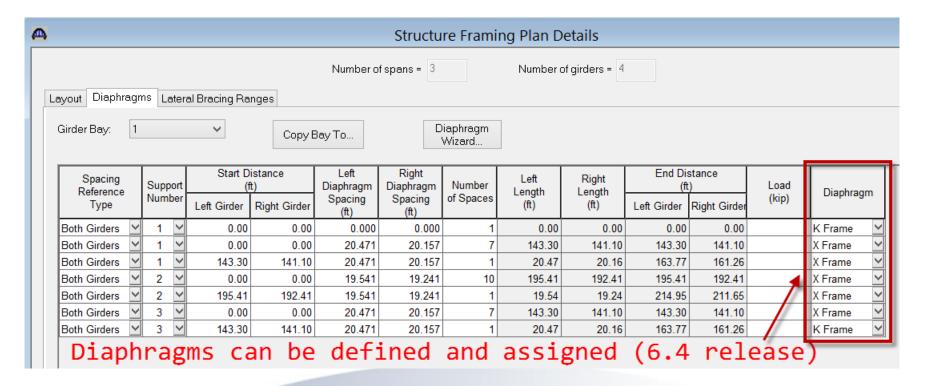
MBE 2nd 2014i, LRFD 7th

MBE 2nd 2015i, LRFD 7th 2015i

MBE 2nd 2016i, LRFD 7th 2016i

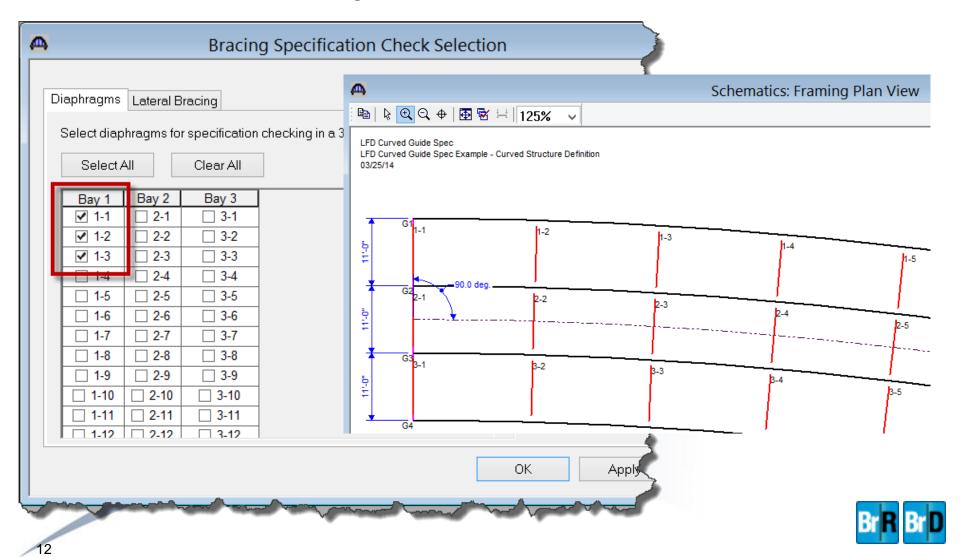
MBE 2nd LRFD 5th

MBE 2nd LRFD 5th 2010i

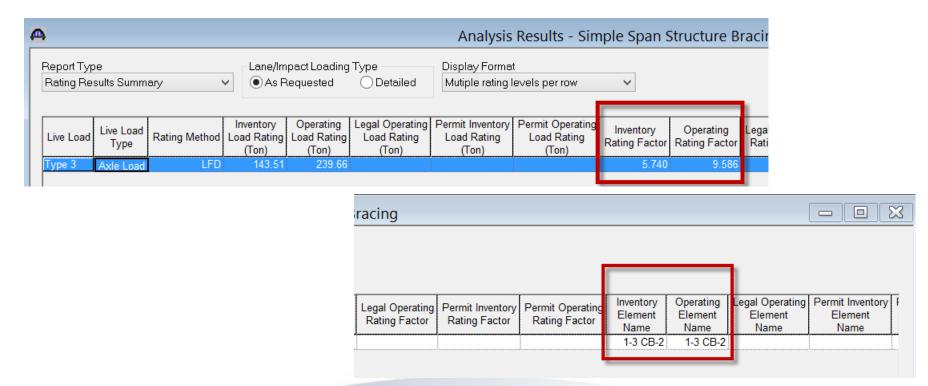

Curved Girder Part 3 – Diaphragm and Lateral Bracing Spec-checking and Rating

Release history for 3D analysis:

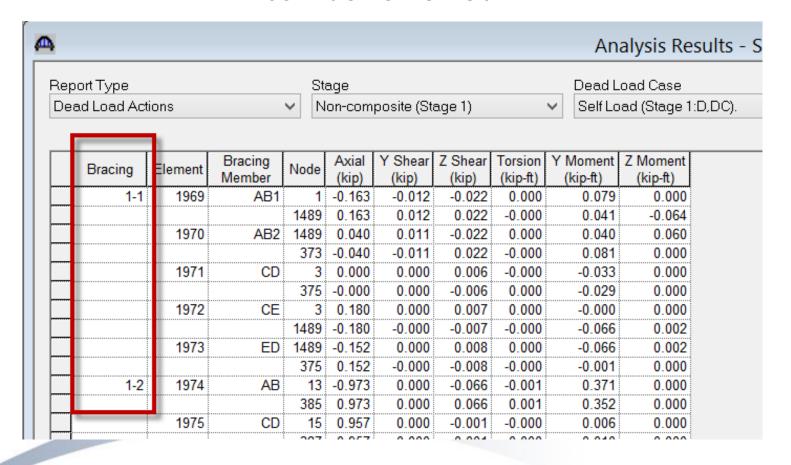
Straight multi-girder system rating and design/review	Oct 2012, Version 6.4
Curved steel multi-girder system rating and design/review	July 2013, Version 6.5
Curved girder enhancements	July 2014, Version 6.6
Straight and curved girder model improvements	June 2015, Version 6.7
Straight and curved girder diaphragm spec-check and rating	July 2016, Version 6.8



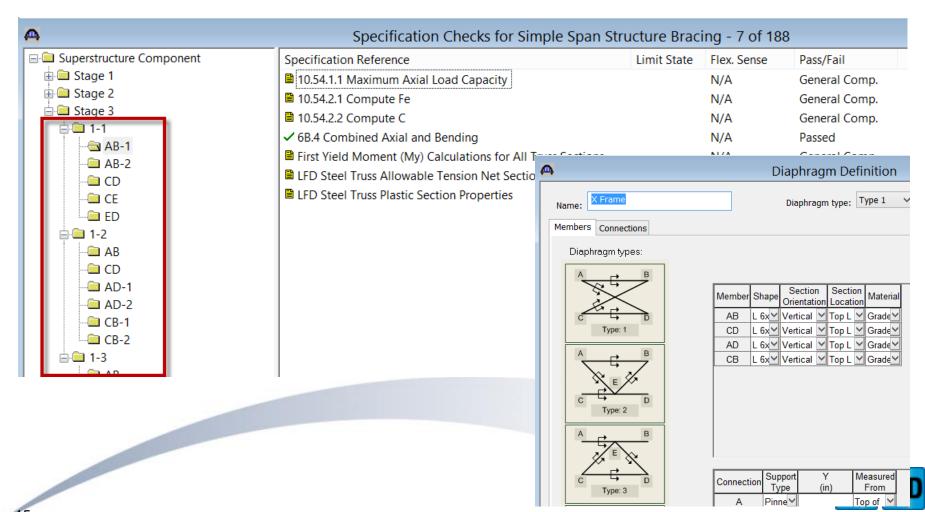
Curved Girder Part 3 – Diaphragm and Lateral Bracing Spec-checking and Rating



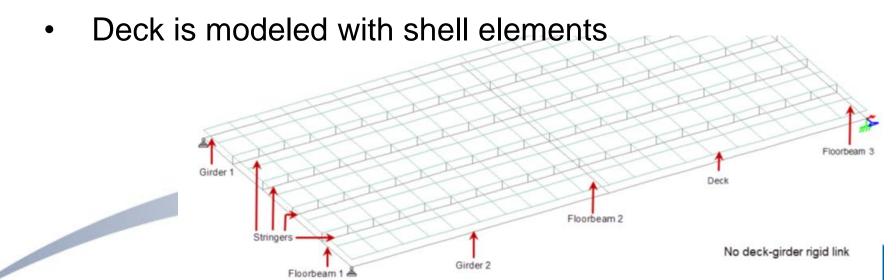
Selection of bracing members to be evaluated



 Spec-checking and Rating results for bracing members can be reviewed



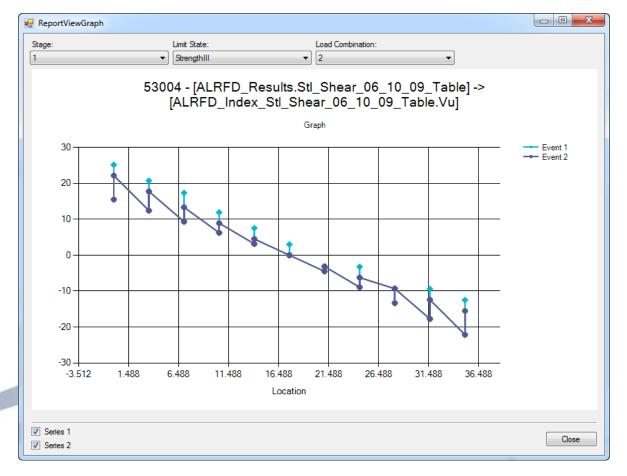
Spec-checking and Rating results for bracing members can be reviewed



 Spec-checking and Rating results for bracing members can be reviewed

Non-standard Gage Vehicle Rating of Floor Systems

- Floor systems composed of girders, floor beams and stringers
- Concrete or corrugated metal deck
- Girders, floor beams and stringers are modeled with frame elements


Regression Comparison Tool

 Easily compare two analyses from two different versions of the software, or different versions of the specification

	Bridge	Analysis Event Template	Member Alternative	Event 1	Event 2	Туре	Matching	Non Matching Event 1	Non Matching Event 2	Comment
	RTU_10001	Default LRFD Template	LRFD-4-2009:G1:Left Exterior Girder:LRFD-4-2009	v660	*v 670	Rtu	176600	0	0	OK!
	RTU_10001	Default LRFD Template	LRFD-5-0000:G1:Left Exterior Girder:LRFD-5-0000	v660	* v670	Rtu	176600	0	0	OK!
	RTU_10001	Default LRFD Template	LRFD-5-2010:G1:Left Exterior Girder:LRFD-5-2010	v660	* v670	Rtu	176600	0	0	OK!
	RTU_10002	Default LRFD Template	LRFD-4-2009:G2:Left Interior Girder:LRFD-4-2009	v660	* v670	Rtu	30569	0	0	OK!
	RTU_10002	Default LRFD Template	LRFD-5-0000:G2:Left Interior Girder:LRFD-5-0000	v660	* v670	Rtu	30569	0	0	OK!
>	RTU_10002	Default LRFD Template	LRFD-5-2010:G2:Left Interior Girder:LRFD-5-2010	v660	* √670	Rtu	30556	13	13	TROUBLE!
	RTU_10003	Default LRFD Template	LRFD-4-2009:G1:Copy of Interior Girder:LRFD-4-2009	v660	* v670	Rtu	38653	0	0	OK!
	RTU_10003	Default LRFD Template	LRFD-5-0000:G1:Copy of Interior Girder:LRFD-5-0000	v660	* v670	Rtu	38653	0	0	OK!
	RTU_10003	Default LRFD Template	LRFD-5-2010:G1:Copy of Interior Girder:LRFD-5-2010	v660	* v670	Rtu	38653	0	0	OK!
	RTU_10004	Default LRFD Template	LRFD-4-2009:Typical Interior:Copy of 60_ Plate Girder:LRF	v660	* v670	Rtu	127367	0	0	OK!
	RTU_10004	Default LRFD Template	LRFD-5-0000:Typical Interior:Copy of 60_ Plate Girder:LRF	v660	* v670	Rtu	127367	0	0	OK!
	RTU_10004	Default LRFD Template	LRFD-5-2010:Typical Interior:Copy of 60_ Plate Girder:LRF	v660	*v670	Rtu	127366	0	0	OK!

Regression Comparison Tool

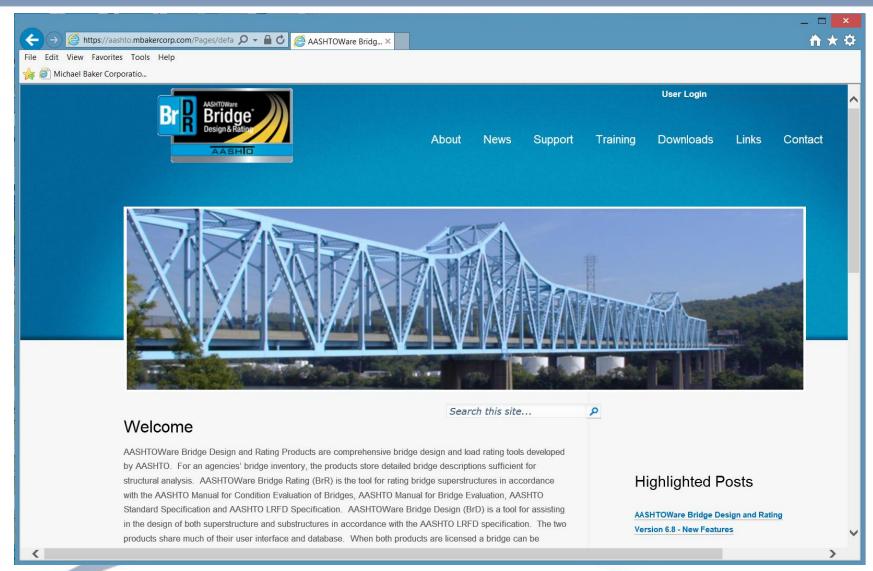
Display comparison results for a specific attribute graphically

Prestressed Concrete Design Tool

- Highlights of the tool:
 - A standalone utility that runs independently outside of BrD
 - LRFD
 - Uses the AASHTO finite element engine and spec-checking modules
 - Capable of using library data from BrD
 - Capable of exchanging design results with BrD
 - Iterates a list of beams, designs the strand pattern and shear reinforcement and reports a design ratio

Rating Tool

- Highlights of the tool:
 - Very fast computation of rating factors using precomputed data
 - Computation of flexure and shear capacities in many cases are dependent on the live load – requires more computations by the rating tool
 - Rating results match BrR results
 - Agencies have different reporting requirements added some configuration options for an agency to customize the feedback


User Group Balloted Enhancements:

	Incident	Description	Product	Status
	JIRA 687	LFR analysis of reinforced concrete and post-tensioned multi-cell	BrR	Completed for 6.8 release
	(Ranked #3)	box beams		
-	JIRA 553	3D FEM and 3D FEM-Vehicle Path analysis of superstructure with	Both	Completed hinge modeling study for
	(Ranked #4)	hinges		3D girder system models

Top Maintenance Items:

Incident	Description	Product	Status
VI 10332	Ability to specify design vehicles in the Shear Stud Design Tool and	BrD	Completed for 6.8 release
	Shear Stirrup Design Tool		
VI 12091	Ability to process only applicable limit states based on vehicle	Both	Completed for 6.8 release
	categories for reinforced concrete box culverts		
VI 12135	Culvert Wizard for creating culverts, culvert structure alternatives	Both	Completed for 6.8 release
	and assign culvert definitions to alternatives		
VI 12608	Ability to specify limit states for LRFD design review of reinforced	BrD	Completed for 6.8 release
	concrete box culverts		
JIRA 269	Remove Uniform Load Contraflexure Points dead load case from	Both	Completed for 6.8 release
	the Analysis Results window		
JIRA 452	Ability to enforce unique name for the Bridge Workspace items in a	Both	Completed for 6.8 release
	folder		
JIRA 499	Ability to specify LRFD 6th Edition 2013 Interim for LRFD design	Both	Completed for 6.8 release
	review and LRFR analysis of reinforced concrete box culverts		

Support Site - aashto.mbakercorp.com

Support Site - aashto.mbakercorp.com

About

News

Support

Training

More than 90 tutorials

Training

Tutorials

Пуре	Name	File Size	File Date						
□ Category: 3D FEM Analysis (4)									
7	2015 BrDR 3D Modeling Improvements	194 KB	7/28/2015						
cm ²	STL10 Diaphragm Training Example	385 KB	7/24/2016						
72	STL8 - Single Span Steel 3D Example	812 KB	4/28/2015						
7	STL9 - Curved Steel 3D Example	1952 KB	4/28/2015						
☐ Category	: Culvert (1) CVT1 - Two-Cell RC Box Culvert Example	1339 KB	4/24/2015						
☐ Category: Distribution Factor Analysis (3)									
12	DF1 - DistributionFactorAnalysisExample	702 KB	9/16/2008						
12	DF2 - DistributionFactorAnalysis Example	771 KB	7/22/2008						
7	DF3 - DistributionFactorAnalysis(LRFR)	459 KB	4/24/2015						
☐ Category : Feature (18)									
73	2014 Spec Update Overview	773 KB	8/4/2014						

Currently updating all tutorials to the 6.8 release

Thank you

